Examples



mdbootstrap.com



 
Статья
2022

Di-2,4-dichlorobenzyltin Complexes: Synthesis, Crystal Structure, and Anticancer Activity


Pengfei ZhouPengfei Zhou, Ping HuangPing Huang, Yunyun FengYunyun Feng, Yuxing TanYuxing Tan, Wujiu JiangWujiu Jiang
Российский журнал общей химии
https://doi.org/10.1134/S1070363222060202
Abstract / Full Text

Di-2,4-dichlorobenzyltin complexes {[4-MeO-C6H4(O)C=N–N=C(Me)COO](2,4-Cl2– C6H3CH2)2 Sn(CH3OH)}2 (1) and {[4-OH–C6H4(O)C=N–N=C(Me)COO](2,4-Cl2–C6H3CH2)2Sn}n (2) have been synthesized and characterized by IR, 1H, 13C, and 119Sn NMR spectra, HRMS, elemental analysis, thermal stability analysis, and X-ray crystal structure analysis. In vitro antitumor activity of both complexes has been evaluated by the CCK8 method against three human cancer cell lines (MCF-7, NCI-H460, and HepG2), and the complexes have exhibited high antitumor activity. Interaction between complexes and calf thymus DNA has been studied by UV-Vis spectroscopy, fluorescence spectroscopy and viscosimetry. The results have indicated that the complexes could be well embedded in the groove, which has been supported by molecular docking.

Author information
  • Key Laboratory of Functional Organometallic Materials, University of Hunan Province, Hunan Provincial Engineering Research Center for Monitoring and Treatment of Heavy Metals Pollution in the Upper Reaches of XiangJiang River, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, 421008, Hunan, ChinaPengfei Zhou, Ping Huang, Yunyun Feng, Yuxing Tan & Wujiu Jiang
References
  1. Guo, Y., Zhu, H., Weng, M., Chen, B., Wang, C., and Sun, L., Biomed. Pharmacother., 2020, vol. 128, p. 110366. https://doi.org/10.1016/j.biopha.2020.110366
  2. Jiang, W., Tan, Y., and Peng, Y., Int. J. Mol. Sci., 2021, vol. 22, p. 13525. https://doi.org/10.3390/ijms222413525
  3. Dasari, S. and Tchounwou, P.B., Eur. J. Pharmacol., 2014, vol. 740, p. 364. https://doi.org/10.1016/j.ejphar.2014.07.025
  4. Ciarimboli, G., Biomolecules, 2021, vol. 11, p. 1637. https://doi.org/10.3390/biom11111637
  5. Cho, Y., Lee, J. B., and Hong, J., Sci. Rep., 2014, vol. 4, p. 4078. https://doi.org/10.1038/srep04078
  6. Kreft, D., Wang, Y., Rattay, M., Toensing, K., and Anselmetti, D., J. Nanobiotechnol., 2018, vol. 16, p. 56. https://doi.org/10.1186/s12951-018-0381-y
  7. Javar, H.A., Garkani-Nejad, Z., Noudeh, G.D., and Mahmoudi-Moghaddam, H., Anal. Chim. Acta, 2020, vol. 1133, p. 48. https://doi.org/10.1016/j.aca.2020.07.071
  8. Sherman, L.R. and Huber, F., Appl. Organomet. Chem., 1988, vol. 2, p. 65. https://doi.org/10.1002/aoc.590020109
  9. Adeyemi, J.O. and Onwudiwe, D.C., Molecules, 2018, vol. 23, p. 2571. https://doi.org/10.3390/molecules23102571
  10. Qiong, Zhang, Mingzhu, Hui, Wang, Xiaohe, Tian, Wen, Ma, Lei, Luo, Jieying, Wu, Hongping, Zhou, Shengli, Li, and Yupeng, Tian, J. Inorg. Biochem., 2018, vol. 192, p. 1. https://doi.org/10.1016/j.jinorgbio.2018.12.001
  11. Chen, L., Xie, J., Song, H., Liu, Y., Gu, Y., Wang, L., and Wang, Q., J. Agr. Food Chem., 2016, vol. 64, p. 6508. https://doi.org/10.1021/acs.jafc.6b02683
  12. Poletto, J., da Silva, M.J.V., Jacomini, A.P., Bidóia, D.L., Volpato, H., Nakamura, C.V., and Rosa, F.A., Drug Develop. Res., 2021, vol. 82, p. 230. https://doi.org/10.1002/ddr.21745
  13. Zhao, Z.X., Cheng, L.P., Li, M., Pang, W., and Wu, F.H., Eur. J. Med. Chem., 2019, vol. 173, p. 305. https://doi.org/10.1016/j.ejmech.2019.04.006
  14. Deacon, G.B. and Phillips, R.J., Coord. Chem. Rev., 1980, vol. 33, p. 227. https://doi.org/10.1016/S0010-8545(00)80455-5
  15. Tan, Y.X., Zhang, Z.J., Liu, Y., Yu, J.X., Zhu, X.M., Kuang, D.Z., and Jiang, W.J., J. Mol. Struct., 2017, vol. 1149, p. 874. https://doi.org/10.1016/j.molstruc.2017.08.058
  16. Tan, Y.-X., Zhang, Z.-J., Feng, Y.-L., Yu, J.-X., Zhu, X.-M., Zhang, F.-X., Kuang, D.-Z., and Jiang, W.-J., J. Inorg. Organomet. Polymer. Mater., 2017, vol. 27, p. 342. https://doi.org/10.1007/s10904-016-0477-5
  17. El-bendary, M.M. and Etaiw, S.E.-d.H., Appl. Organomet. Chem., 2018, vol. 32, p. e4152. https://doi.org/10.1002/aoc.4152
  18. Tariq, M., Ali, S., Shah, N. A., Muhammad, N., Tahir, M.N., and Khalid, N., Inorg. Chim. Acta, 2013, vol. 405, p. 444. https://doi.org/10.1016/j.ica.2013.06.036
  19. Noureen, S., Sirajuddin, M., Ali, S., Shaheen, F., and Tahir, M.N., Polyhedron, 2015, vol. 102, p. 750. https://doi.org/10.1016/j.poly.2015.10.056
  20. Arjmand, F. and Yousuf, I., J. Organomet. Chem., 2013, vol. 743, p. 55. https://doi.org/10.1016/j.jorganchem.2013.06.018
  21. Sisido, K., Takeda, Y., and Kinugawa, Z., J. Am. Chem. Soc., 1961, vol. 83, p. 538. https://doi.org/10.1021/ja01464a008
  22. Sheldrick, G.M., SHELXL-97, A Program for Crystal Structure Refinement, Germany Geöttingen: University of Geöttingen, 1997
  23. Pyle, A.M., Rehmann, J.P., Meshoyrer, R., Kumar, C.V., Turro, N.J., and Barton, J.K., J. Am. Chem. Soc., 1989, vol. 111, p. 3051. https://doi.org/10.1021/ja00190a046
  24. Nath, M. and Kumari, M.R., J. Photochem. Photobiol., B, 2017, vol. 174, p. 182. https://doi.org/10.1016/j.jphotobiol.2017.07.017
  25. Tan, C., Liu, J., Chen, L., Shi, S., and Ji, L., J. Inorg. Biochem., 2008, vol. 102, p. 1644. https://doi.org/10.1016/j.jinorgbio.2008.03.005