Examples



mdbootstrap.com



 
Статья
2021

New Syntheses of 4NPMA Homopolymer and Its Copolymer with Limonene: Experimental Analysis and Density Functional Theory Study


 Nevin Çankaya Nevin Çankaya, Emine TanişEmine Taniş, Pembe Gül SapanPembe Gül Sapan
Российский журнал физической химии А
https://doi.org/10.1134/S0036024421010052
Abstract / Full Text

The N-(4-nitrophenyl)methacrylamide homopolymer (poly(4NPMA)) and copolymer of limonene with N-(4-nitrophenyl)methacrylamide (4NPMA-co-LIM) have been synthesized and characterized by FT-IR and NMR spectroscopic methods. The spectroscopic properties of poly(4NPMA) and 4NPMA-co-LIM were predicted using Density Functional Theory (DFT) calculations. The results have been compared with observed values, and they match with each other. Frontier orbital analysis (FMOs), global reactivity descriptors, MEP as well as Mulliken atomic charge were calculated with same method for poly(4NPMA) and 4NPMA-co-LIM. The physical properties of homopolymer of NPMA and its copolymer with D-Limonene were compared and evaluated. Thermal stabilities of homo and copolymer were investigated.

Author information
  • Department of Chemistry, Faculty of Science, University of Usak, Usak, Turkey Nevin Çankaya & Pembe Gül Sapan
  • Department of Electrical and Electronics Engineering, Kırşehir Ahi Evran University, Kırsehir, TurkeyEmine Taniş
References
  1. F. Akman, J. Thermoplast. Compos. Mater., 1 (2017).
  2. F. Akman, Polymer Bull. 74, 2975 (2017).
  3. F. Akman, NRC Res. Press 94, 1 (2016).
  4. M. Talu, E. U. Demiroğlu, S. Yurdakul, and S. Badoğlu, Spectrochim. Acta, Part A 134, 267 (2015).
  5. F. Akman and N. Çankaya, Pigment Resin Technol. 45, 301 (2016).
  6. M. D. B. Desai, B. S. R. Reddy, R. Arshady, and M. H. George, Polymer 27, 96 (1986).
  7. N. Çankaya and G. Besci, J. Faculty Eng. Archit. Gazi Univ. 33, 1155 (2018).
  8. Y. Wang, F. Ye, E. K. Jeong, Y. Sun, D. P. Parker, and Z. R. Lu, Pharm. Res. 24, 1208 (2007).
  9. P. S. Vijayan and A. Penlidis, J. Mac. Sci-Pure Appl. Chem. 39, 591 (2002).
  10. R. Arshady, B. S. R. Reddy, and M. H. George, Polymer 27, 769 (1986).
  11. S. Pitchumani and C. Rami Reddy, J. Polym. Sci. Polym. Chem. Ed. 20, 277 (1982).
  12. M. Bankova, T. Petrova, N. Manolova, and I. Rashkov, Eur. Polym. J. 32, 569 (1998).
  13. M. Babazadeh, Polym. Deg. Stab. 91, 3245 (2006).
  14. P. S. Vijayanand, R. Arunprasath, R. Balaji, and S. Nanjundan, J. Appl. Polym. Sci. 85, 2261 (2002).
  15. P. G. Vijayaraghavan and B. S. R. Reddy, J. Appl. Polym. Sci. 61, 936 (1996).
  16. K. Ichimura and Y. Nishio, J. Polym. Sci., Part A 25, 1579 (1987).
  17. J. L. Hua and J. W. YipLam, Polymer 47, 18 (2006).
  18. P. G. Vijayaraghavan and B. S. R. Reddy, J. Appl. Polym. Sci. 61, 936 (1996).
  19. C. S. Joneselvamalar and P. S. Vijayanand, J. Appl. Polym. Sci. 91, 3604 (2004).
  20. A. Mohammad, Properties and Application in Chemistry, Green Solvents I (Springer, New York, 2012).
  21. M. Modena, R. B. Bates, and C. S. Marvel, J. Polym. Sci. A 3, 949 (1965).
  22. W. J. Roberts and A. R. Day, J. Am. Chem. Soc. 72, 1226 (1950).
  23. T. Douichi, H. Yamanguchi, and Y. Minoura, Eur. Polym. J. 17, 961 (1981).
  24. S. Sharma and A. Srivastava, Eur. Polym. J. 9, 2235 (2004).
  25. S. Sharma and A. Srivastava, Polym. Plast. Technol. Eng. 3, 485 (2003).
  26. S. Sharma and A. Srivastava, J. Appl. Polym. Sci. 6, 593 (2003).
  27. Y. Zhang and A. M. Dube, Polym.-Plast. Technol. Eng. 54, 499 (2015).
  28. N. Kindermann, A. Cristofol, and A. W. Kleij, ACS Catal. 7, 3860 (2017).
  29. S. Raeissi and C. J. Peters, J. Supercrit. Fluids 33, 201 (2005).
  30. A. Potter, J. Andersson, A. Sjöblom, E. Junedahl, A. P. Cousins, and E. Lunden, Results from the Swedish National Screening Programme (2004).
  31. N. Çankaya, E. Tanış, H. E. Gülbaş, and N. Bulut, Polym. Bull. 76, 3297 (2019).
  32. N. Çankaya and E. Tanış, Mater. Res. Express 6, 025310 (2019).
  33. T. Jähnert, T. Janoschka, M. D. Hager, and U. S. Schubert, Eur. Polym. J. 61, 105 (2014).
  34. M. J. Frisch et al., Gaussian 09, Revision A.2 (Gaussian, Inc., Wallingford, CT, 2009).
  35. R. Dennington, T. Keith, and J. Millam, GaussView, Version 5 (Semichem Inc.).
  36. A. D. Becke, Phys. Rev. A 38, 3098 (1988).
  37. S. H. Vosko, L. Vilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).
  38. H. Watanabe, N. Hayazawa, Y. Inouye, and S. Kawata, J. Phys. Chem. B 109, 5012 (2005).
  39. Y.-H. Xu and Q. Fanqi, Acta Crystallogr., E 64, o1751 (2008).
  40. M. Barthes, G. D. Nunzio, and M. Ribet, Synth. Met. 76, 337 (1996).
  41. N. P. G. Roeges, A Guide to the Complete Interpretation of Infrared Spectra of Organic Compounds (Wiley, New York, 1994).
  42. A. E. Aliev, D. Courtier-Murias, and S. Zhou, J. Mol. Struct.: THEOCHEM 893, 1 (2009).
  43. H. O. Kalinowski, S. Berger, and S. Braun, Carbon-13 NMR Spectroscopy (Wiley, Chichester, 1988).
  44. K. Pihlaja and E. Kleinpeter, Carbon-13 Chemical Shifts in Structural and Sterochemical Analysis (VCH, New York, 1994).
  45. K. Matyjaszewski, ACS Symp. Ser. 944, 252 (2006).
  46. A. D. Jenkins, R. G. Jones, and G. Moad, Pure Appl. Chem. 82, 483 (2010).
  47. I. Fleming, Frontier Orbital and Organic Chemical Reactions (Wiley, New York, 1976).
  48. C. S. Abraham, J. C. Prasana, and S. Muthu, Spectrochim. Acta, Part A 181, 153 (2017).
  49. T. Koopmans, Physica (Amsterdam, Neth.) 1, 104 (1934).
  50. R. S. Mulliken, J. Chem. Phys. 2, 782 (1934).
  51. J. Murray and K. Sen, Molecular Electrostatic Potentials: Concepts and Applications (Elsevier, Amsterdam, 1996).
  52. E. Scrocco and J. Tomasi, Adv. Quantum Chem. 11, 115 (1978).
  53. P. G. Sapan, Synthesis, Master’s Thesis (Usak Univ., Usak, Turkey, 2018).