Examples



mdbootstrap.com



 
Статья
2021

Features of the Recurrent Approximation of Retention Parameters of Polyfunctional Compounds in Reversed-Phase High-Performance Liquid Chromatography


I. G. ZenkevichI. G. Zenkevich, D. A. NikitinaD. A. Nikitina
Российский журнал физической химии А
https://doi.org/10.1134/S003602442102028X
Abstract / Full Text

Five antitumor drugs are selected as examples of polyfunctional organic compounds to test the possibilities of approximating their retention parameters in reversed-phase high-performance liquid chromatography using recurrent relationships of the form of tR(C + ΔС) = atR(C) + b, where C is the concentration of organic modifier in the composition of the eluent (acetonitrile), ΔC = const is a constant step of its change in concentration, and a and b are coefficients calculated using the least squares method. Examples of both ideally linear dependences in all ranges of acetonitrile concentrations and deviations from linearity in different ranges of its concentrations are revealed. Discussion of the possible reasons for such deviations (both structural factors and physicochemical properties) suggests that acid–base equilibria in the eluent are not the main ones, the positions of which depend on the concentration of the organic component. The reversible formation of hydrated forms typical of compounds whose molecules contain such polar fragments as amide ‒CO–NH– and sulfonamide –SO2–NH groups, seems more likely. Recurrent approximation of the retention parameters can be considered the simplest and most obvious way to reveal the specific interactions of the test compounds with components of the eluent.

Author information
  • Institute of Chemistry, St. Petersburg State University, 198504, St. Petersburg, RussiaI. G. Zenkevich & D. A. Nikitina
References
  1. Handbuch der Gaschromatographie, Ed. by E. Leibnitz and H. G. Struppe (Akademische, Leipzig, 1984).
  2. P. Schoenmakers, Optimization of Chromatographic Selectivity (Elsevier, Amsterdam, 1986).
  3. K. Valko, in Retention and Selectivity in Liquid Chromatography (Elsevier, Amsterdam, 1995), Chap. 2, p. 47.
  4. O. B. Rudakov, I. A. Vostrov, S. V. Fedorov, et al., Companion of the Chromatographer. Liquid Chromatography Methods (Vodolei, Voronezh, 2004) [in Russian].
  5. P. J. Shoenmakers, H. A. H. Billet, and L. de Galan, J. Chromatogr. 185, 179 (1979). https://doi.org/10.1016/S0021-9673(00)85604-6
  6. L. R. Snyder, J. W. Dolan, and J. R. Gant, J. Chromatogr. 165, 3 (1979).
  7. L. R. Snyder, Anal. Chem. 46, 1384 (1974). https://doi.org/10.1021/ac60347a052
  8. R. P. W. Scott and P. Kucera, J. Chromatogr. 12, 425 (1975).
  9. I. G. Zenkevich, J. Chromatogr. 23, 179 (2009).
  10. I. G. Zenkevich, Russ. J. Phys. Chem. A 82, 886 (2008). https://doi.org/10.1134/S0036024408060022
  11. I. G. Zenkevich, in Chemometrics in Chromatography, Ed. by L. Komsta, Y. V. Heyden, and J. Sherma (CRC, London, 2018), Chap. 24, p. 449.
  12. I. G. Zenkevich, J. Chemometr. 24, 158 (2010). https://doi.org/10.1002/cem.1297
  13. F. Hartley, C. Burgess, and R. Alcoc, Solution Equilibria (Ellis Horwood, Chichester, UK, 1980).
  14. A. V. Ivanov, A. B. Tessman, and S. S. Kubyshev, Vestn. Mosk. Univ., Ser. Khim 45 (5), 339 (2004).
  15. Dictionary of Organophosphorous Compounds, Ed. by R. Edmundsen (CRC, London, 1987).
  16. I. G. Zenkevich and S. V. Gushchina, Russ. J. Phys. Chem. A 85, 1641 (2011). https://doi.org/10.1134/S0036024411090317
  17. M. Kobayashi and K. Nishioka, J. Phys. Chem. 91, 1247 (1987).
  18. L. R. Snyder and J. W. Dolan, J. Chromatogr., A 1302, 45 (2013). https://doi.org/10.1016/j.chroma.2013.05.082
  19. B. R. Saifutdinov and A. K. Buriak, Colloid J. 81, 555 (2019). https://doi.org/10.1134/S1061933X19050107
  20. B. R. Saifutdinov and A. K. Buriak, Colloid J. 81, 754 (2019). https://doi.org/10.1134/S1061933X19060176
  21. P. Zuvela, M. Skoczylas, J. J. Lin, et al., Chem. Rev. 119 (6), 3674 (2019). https://doi.org/10.1021/acs.chemrev8b00246