Bromate-Anion Electroreduction at Rotating Disc Electrode under Steady-State Conditions: Comparison of Numerical and Analytical Solutions for Convective Diffusion Equations in Excess of Protons

A. E. Antipov A. E. Antipov , M. A. Vorotyntsev M. A. Vorotyntsev , D. V. Konev D. V. Konev , E. M. Antipov E. M. Antipov
Российский электрохимический журнал
Abstract / Full Text

The article contains results of numerical analysis of convective-diffusion transport equations for the components of the bromate anion electrochemical reduction process at rotating disk electrode via the redox-mediator autocatalysis (EC″) mechanism. The problem is solved taking into account the difference in the diffusion coefficients of the components. It is assumed that the concentration of protons inside the solution is constant, including the diffusion layer, due to its high value compared to the concentration of bromate-anions. Comparison of the obtained results with the predictions of an approximate analytical study of the same system (Vorotyntsev, M.A., Antipov, A.E., Electrochim. Acta, 2017, vol. 246, p. 1217) confirms the adequacy of the developed analytical approach to the calculating of both the concentration profiles of the system’s components (with the exception of the case of very thick diffusion layer) and the current density for a wide range of external parameters: the solution composition, rate of the comproportionation reaction, the convection intensity (the electrode rotation velocity) and the passing current.

Author information
  • Mendeleev University of Chemical Technology, Moscow, 125047, Russia

    A. E. Antipov, M. A. Vorotyntsev, D. V. Konev & E. M. Antipov

  • Lomonosov Moscow State University, Moscow, 119992, Russia

    A. E. Antipov, M. A. Vorotyntsev & E. M. Antipov

  • Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow oblast, 142432, Russia

    M. A. Vorotyntsev & D. V. Konev

  • UMR 6302 CNRS-Université de Bourgogne, Dijon, France

    M. A. Vorotyntsev

  1. Tolmachev, Y.V., Piatkivskyi, A., Ryzhov, V.V, Konev, D.V, and Vorotyntsev, M.A., Energy cycle based on a high specific energy aqueous flow battery and its potential use for fully electric vehicles and for direct solar-to-chemical energy conversion, J. Solid State Electrochem., 2015, vol. 19, p. 2711.
  2. Tolmachev, Yu.V. and Vorotyntsev, M.A., Fuel Cells with Chemically Regenerative Redox Cathodes, Russ. J. Electrochem., 2016, vol. 50, p. 403–411.
  3. Tanaka, Y., Chapter in: Ion exchange membranes. Fundamentals and applications (Second Edition), Elsevier B.V., 2015.
  4. Trushkina, O.A., Fedorovich, N.V., and Botuchova, G.N., Hidden limiting currents for electroreduction of the second group anions, Russ. J. Electrochem., 1995, vol. 32, p. 857.
  5. Skunik, M. and Kidesza, P.J. Phosphomolybdate-modified multi-walled carbon nanotubes as effective mediating systems for electrocatalytical reduction of bromate, Anal. Chim. Acta, 2009, vol. 631, p. 153.
  6. Vorotyntsev, M.A., Konev, D.V, and Tolmachev, Y.V., Electroreduction of halogen oxoanions via autocatalytic redox mediation by halide anions: novel EC” mechanism. Theory for stationary 1D regime, Electrochim. Acta, 2015, vol. 173, p. 779.
  7. Vorotyntsev, M.A., Antipov, A.E., and Konev, D.V., Bromate anion reduction: novel autocatalytic (EC”) mechanism of electrochemical processes, Its implication for redox flow batteries of high energy and power densities, Pure Appl. Chem., 2017, vol. 89. https://doi.org/10.1515/pac-2017-0306
  8. Antipov, A.E. and Vorotyntsev, M.A., Bromate anion electroreduction on inactive RDE under steady-state conditions. Numerical study of ion transport processes and comproportionation reaction, Russ. J. Electrochem., 2016, vol. 52, p. 925.
  9. Antipov, A.E., Vorotyntsev, M.A., Tolmachev, Y.V. et al., Electroreduction of bromate anion in acidic solutions at the inactive rotating disc electrode under steady-state conditions: Numerical modeling of the process with bromate anions being in excess compared to protons, Doklady, Phys. Chem, 2016, vol. 468, p. 141.
  10. Nernst, W., Theorie der Reaktionsgeschwindiglceit in heterogenen Systemen, Z. Phys. Chem., 1904, vol. 47, p. 52.
  11. Nernst, W, and Merriam, E.S., Zur Theorie des Rest-stroms, Z. Phys. Chem, 1905, vol. 53, P. 235.
  12. Levich, V.G., Physicochemical Hydrodynamics, Englewood Cliffs, NJ: Prentice-Hall, 1962.
  13. Vorotyntsev, M.A. and Antipov, A.E., Bromate electroreduction from acidic solution at rotating disc electrode. Theory of steady-state convective-diffusion transport, Electrochim. Acta, 2017, vol. 246, p. 1217.
  14. Antipov, A.E. and Vorotyntsev, M.A., Bromate anion electroreduction on RDE under steady state conditions in excess of protons: numerical solution of the convection-diffusion equations with equal diffusion coefficients of components, Russ. J. Electrochem., 2017, vol. 54, p. 62.
  15. Cortes, C.E.S. and Faria, R.B., Revisiting the kinetics and mechanism of bromate-bromide reaction, J. Brazilian Chem. Soc., 2001, vol. 12, p. 775.
  16. Cortes, C.E.S. and Faria, R.B., Kinetics and mechanism of bromate-bromide reaction catalyzed by acetate, Inorg. Chem., 2004, vol. 43, p. 1395.
  17. Schmitz, G., Kinetics of the bromate-bromide reaction at high bromide concentrations, Int. J. Chem. Kinet., 2007, vol. 39, p. 1721.
  18. Pugh, W., The stability of bromic acid and its use for the determination of bromide in bromates and in chlorides, Trans. Roy. Soc. S. Afr., 1932, vol. 20, p. 327.
  19. Vorotyntsev, M.A. and Antipov, A.E., Reduction of bromate anion via autocatalytic redox-mediation by Br2/Br redox couple. Theory for stationary 1D regime. Effect of different Nernst layer thicknesses for reactants, J. Electroanal. Chem., 2016, vol. 779, p. 146.
  20. Bruno, T.J. and Lide, D.R., CRC Handbook of Chemistry and Physics, 97th Edition, ed. Haynes, W.M., Boca Raton, FL: CRC Press, 2015.
  21. Cussler, E.L., Diffusion: Mass Transfer in Fluid Systems, Second ed., New York: Cambridge University Press, 1997.
  22. Antipov, A.E. and Vorotyntsev, M.A., Maximum current density for bromate anion electroreduction on RDE: asymptotic behavior for large diffusion layer thicknesses, Russ. J. Electrochem., 2018, vol. 54 (in press).