Electrochemical Behavior of Si(IV) on the Mo Electrode in the CaCl2–CaF2–CaO–SiO2 Melt

Jidong Li Jidong Li , Hao Ren Hao Ren , Xiao Yin Xiao Yin , Jinlin Lu Jinlin Lu , Jing Li Jing Li
Российский электрохимический журнал
Abstract / Full Text

This work concerns a study on investigating the electrochemical behaviors of silicon using the molybdenum electrode in molten CaCl2–CaF2–CaO–SiO2 at 1023 K, by means of linear scan voltammetry, square wave voltammetry, chronoamperometry, open circuit chronopotentiometry, reversal chronopotentiometry and polarization curve. The results based on the linear scan voltammetry showed that reduction of Si(IV) in CaCl2–CaF2–CaO–SiO2 melt proceeds in a single step exchanging four electrons, which is a reversible process with diffusion-controlled mass transfer, and the diffusion coefficient for the reduction process of Si(IV) ions in CaCl2–CaF2–CaO (3.68 wt %)–SiO2 (4 wt %) is about 1.11 × 10−4 cm2 s−1, at 1023 K. The reversibility of the Si(IV)/Si redox couple on the molybdenum electrode is confirmed via linear scan voltammetry. Chronoamperometric measurements indicated that the I–t transients of Si(IV) follow instantaneous nucleation with varied the applied overpotential. Furthermore, the sample deposited on the molybdenum electrode using potentiostatic electrolysis was identified by X-ray diffraction (XRD). The XRD result indicates that the obtained deposits were Si and MoSi2.

Author information
  • School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan, 114051, China

    Jidong Li, Hao Ren, Xiao Yin, Jinlin Lu & Jing Li

  1. Nohira, T., Ido, A., Shimao, T., Yang, X., Yasuda, K., Hagiwara, R., and Homma, T., A new electrolytic production process of silicon using liquid Zn alloy cathode in molten salt, Ecs Trans., 2016, vol. 75, no. 15, pp. 17.
  2. Ergül, E., Karakaya, I., and Erdoğan, M., Electrochemical decomposition of SiO2 pellets to form silicon in molten salts, J. Alloys Compd., 2011, vol. 509, no. 3, pp. 899.
  3. Mazumder, B., Silicon and It’s Compounds, Science Publ., 2001.
  4. Cho, S.K., Fan, F.R., and Bard, A.J., Electrodeposition of crystalline and photoactive silicon directly from silicon dioxide nanoparticles in molten CaCl2, Angew. Chem. Int. Ed., 2012, vol. 124, no. 51, pp. 12740.
  5. Woditsch, P. and Koch, W., Solar grade silicon feedstock supply for PV industry, Sol. Energy Mat. Sol. C, 2002, vol. 72, nos. 1–4, p. 11.
  6. Loutzenhiser, P.G., Tuerk, O., and Steinfeld, A., Production of Si by vacuum carbothermal reduction of SiO2 using concentrated solar energy, J. Org. Mater., 2010, vol. 62, no. 9, pp. 49.
  7. Müller, A., Ghosh, M., Sonnenschein, R., and Woditsch, P., Silicon for photovoltaic application, Mater. Sci. Eng. B, 2006, vol. 134, nos. 2–3, p. 257.
  8. Chen, G.Z., Fray, D.J., and Farthing, T.W., Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride, Nature, 2000, vol. 407, no. 6802, pp. 361.
  9. Bukatova, G.A., Kuznetsov, S.A., and Gaune, E.M., Electrochemical synthesis of rare-Earth metal (Eu, Nd) borides in molten salts, Russ. J. Electrochem., 2007, vol. 43, no. 8, pp. 929.
  10. Liu, K., Tang, H.-B., Pang, J.-W., Liu, Y.-L., Feng, Y.-X., Chai, Z.-F., and Shi, W.-Q., Electrochemical properties of uranium on the liquid gallium electrode in LiCl–KCl eutectic, J. Electrochem. Soc., 2016, vol. 163, no. 9, p. D554.
  11. Yan, Y.-D., Zhang, M.-L., Han, W., Cao, D.-X., Yuan, Y., Xue, Y., and Chen, Z., Electrochemical formation of Mg-Li alloys at solid magnesium electrode from LiCl–KCl melts, Electrochim. Acta, 2008, vol. 53, no. 8, pp. 3323.
  12. Castrillejo, Y., Bermejo, M.R., Barrado, E., and Martinez, A.M., Electrochemical behaviour of erbium in the eutectic LiCl-KCl at W and Al electrodes, Electrochim. Acta, 2006, vol. 51, no. 10, pp. 1941.
  13. Castrillejo, Y., Fernandez, P., Medina, J., Hernandez, P., and Barrado, E., Electrochemical extraction of samarium from molten chlorides in pyrochemical processes, Electrochim. Acta, 2011, vol. 56, no. 24, pp. 8638.
  14. Liu, Y.-L., Yan, Y.-D., Han, W., Zhang, M.-L., Yuan, L.-Y., Liu, K., Ye, G.-A., He, H., Chai, Z.-F., and Shi, W.-Q., Extraction of thorium from LiCl–KCl molten salts by forming Al–Th alloys: a new pyrochemical method for the reprocessing of thorium-based spent fuels, RSC Adv., 2013, vol. 3, no. 45, pp. 23539.
  15. Liu, Y.-L., Yan, Y.-D., Han, W., Zhang, M.-L., Yuan, L.-Y., Lin, R.-S., Ye, G.-A., He, H., Chai, Z.-F., and Shi, W.-Q., Electrochemical separation of Th from ThO2 and Eu2O3 assisted by AlCl3 in molten LiCl–KCl, Electrochim. Acta, 2013, vol. 114, p. 180.
  16. Novoselova, A.V. and Smolenskii, V.V., Electrochemical study of the properties of Nd(III) and Nd(II) ions in molten LiCl-KCl-CsCl eutectic and individual CsCl, Russ. J. Electrochem., 2013, vol. 49, no. 10, pp. 931.
  17. Barrado, E., Castrillejo, Y., Bermejo, M.R., and Rosa, F.D.L., Cathodic behaviour of europium(III) on glassy carbon, electrochemical formation of Al4Eu, and oxoacidity reactions in the eutectic LiCl-KCl, J. Electroanal. Chem., 2007, vol. 603, no. 1, pp. 81.
  18. Gibilaro, M., Massot, L., Chamelot, P., Cassayre, L., and Taxil, P., Electrochemical extraction of europium from molten fluoride media, Electrochim. Acta, 2009, vol. 55, no. 1, pp. 281.
  19. Nohira, T., Yasuda, K., and Ito, Y., Pinpoint and bulk electrochemical reduction of insulating silicon dioxide to silicon, Nat. Mater., 2003, vol. 2, no. 6, pp. 397.
  20. Jin, X.-B., Gao, P., Wang, D.-H., Hu, X.-H., and Chen, G.-Z., Electrochemical preparation of silicon and its alloys from solid oxides in molten calcium chloride, Angew. Chem., 2004, vol. 43, no. 6, pp. 733.
  21. Yang, X., Ji, L., Zou, X., Lim, T., Zhao, J., Yu, E.T., and Bard, A.J., Effective manufacturing of Silicon solar cells: electrodeposition of high-quality Si films in a CaCl2-based molten salt, Angew. Chem., 2017, vol. 56, no. 74 p. 15078.
  22. Cai, J., Luo, X.-T., Haarberg, G.M., Kongstein, O.E., and Wang, S.L., Electrorefining of metallurgical grade silicon in molten CaCl2 based salts, J. Electrochem. Soc., 2012, vol. 159, no. 3, p. D155.
  23. Elwell, D. and Rao, G.M., Mechanism of electrodeposition of silicon from K2SiF6-flinak, Electrochim. Acta, 1982, vol. 27, no. 6, pp. 673.
  24. Rao, G.M., Elwell, D., and Feigelson, R.S., Electrowinning of silicon from K2SiF6-molten fluoride systems, J. Electrochem. Soc., 1980, vol. 127, no. 9, pp. 1940.
  25. Cohen, U., Silicon epitaxial growth by electrodeposition from molten fluorides, J. Electrochem. Soc., 1976, vol. 123, no. 3, pp. 381.
  26. Boen, R. and Bouteillon, J., The electrodeposition of silicon in fluoride melts, J. Appl. Electrochem., 1983, vol. 13, no. 3, pp. 277.
  27. Cai, Z.-Y., Li, Y.-G., He, X.-F., and Liang, J.-L., Electrochemical behavior of silicon in the (NaCl–KCl–NaF–SiO2) molten salt, Metall. Mater. Trans. B, 2010, vol. 41, no. 5, pp. 1033.
  28. Hu, Y.-J., Wang, X., Xiao, J.-S., Hou, J.-G., Jiao, S.-Q., and Zhu, H.-M., Electrochemical behavior of silicon(IV) ion in BaF2–CaF2–SiO2 melts at 1573 K, J. Electrochem. Soc., 2013, vol. 160, no. 3, p. D81.
  29. Bieber, A.L., Massot, L., Gibilaro, M., Cassayre, L., Taxil, P., and Chamelot, P., Silicon electrodeposition in molten fluorides, Electrochim. Acta, 2012, vol. 62, p. 282.
  30. Sokhanvaran, S. and Barati, M., Electrochemical behavior of silicon species in cryolite melt, J. Electrochem. Soc., 2014, vol. 161, no. 1, p. E6.
  31. Haarberg, G.M., Famiyeh, L., Martinez, A.M., and Osen, K.S., Electrodeposition of silicon from fluoride melts, Electrochim. Acta, 2013, vol. 100, p. 226.
  32. Maeda, K., Yasuda, K., Nohira, T., Hagiwara, R., and Homma, T., Silicon electrodeposition in water-Soluble KF-KCl molten salt: investigations on the reduction of Si (IV) ions, J. Electrochem. Soc., 2015, vol. 162, no. 9, p. D444.
  33. Galyus, Z., Theoretical Basics of Electrochemical Analysis, Mir Publishing House, 1974.
  34. Kuznetsova, S.V., Dolmatov, V.S., and Kuznetsov, S.A., Voltammetric study of electroreduction of silicon complexes in a chloride-fluoride melt, Russ. J. Electrochem., 2009, vol. 45, no. 7, pp. 742.
  35. Xu, L., Xiao, Y.-P., Xu, Q., Sandwijk, A.V., Li, J.-D., Zhao, Z., and Yang, Y.-X., Electrochemical behavior of zirconium in molten LiF–KF–ZrF4 at 600°C, RSC Adv., 2016, vol. 6, no. 87, pp. 84472.
  36. Liu, Y.-L., Yuan, L.-Y., Ye, G.-A., Zhang, M.-L., He, H., Tang, H.-B., Lin, R.-S., and Shi, W.-Q., Electrochemical extraction of samarium from LiCl-KCl melt by forming Sm–Zn alloys, Electrochim. Acta, 2014, vol. 120, p. 369.
  37. Chamelot, P., Taxil, P., and Lafage, B., Voltammetric studies of tantalum electrodeposition baths, Electrochim. Acta, 1994, vol. 39, no. 17, pp. 2571.
  38. Luo, L.-X., Liu, Y.-L., Liu, N., Liu, K., Yuan, L.-Y., Chai, Z.-F., and Shi, W.-Q., Electroreduction-based Tb extraction from Tb4O7 on different substrates: understanding Al–Tb alloy formation mechanism in LiCl–KCl melt, RSC Adv., 2015, vol. 5, no. 85, pp. 69134.
  39. Serrano, K. and Taxil, P., Electrochemical reduction of trivalent uranium ions in molten chlorides, J. Appl. Electrochem., 1999, vol. 29, no. 4, pp. 497.
  40. Allongue, P. and Souteyrand, E., Experimental investigation of charge transfer at the semiconductor/electrolyte junction, Electrochim. Acta, 1992, vol. 37, no. 5, pp. 781.
  41. Zhou, B.Z. and Chen, Y.Y., Basic Tutorial of Electrode Process Dynamics, Wu Han: Wuhan University Press, 1987.