Examples



mdbootstrap.com



 
Статья
2020

Modifications of Separators for Li–S Batteries with Improved Electrochemical Performance


 Dezhi Yang Dezhi Yang, Xiaosong XiongXiaosong Xiong, Yusong ZhuYusong Zhu, Yuhui ChenYuhui Chen, Lijun FuLijun Fu, Yi ZhangYi Zhang, Yuping WuYuping Wu
Российский электрохимический журнал
https://doi.org/10.1134/S1023193520050110
Abstract / Full Text

Lithium–sulfur (Li–S) batteries are widely regarded as one of the promising next-generation secondary energy storage systems. However, some tricky challenges, such as electrically insulating elemental sulfur, shuttle effect and lithium dendrites, have been limiting its practical application. Modification of separators, which is found as a facile and low-cost settlement, has shown great advantages in solving the above three crucial problems, leading to greatly improved performance of Li–S batteries. In this paper, we summarize recent progresses on separators for Li–S batteries including coatings such as carbon materials, polymers, and inorganic materials, and tailoring multi-functional gel separators to achieve Li–S batteries with high performance. The importance and development directions of functional separators in the further commercialization of Li–S batteries are also discussed.

Author information
  • State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM) and School of Energy Science and Engineering, Nanjing Tech University, 211816, Nanjing, China Dezhi Yang, Xiaosong Xiong, Yusong Zhu, Yuhui Chen, Lijun Fu, Yi Zhang & Yuping Wu
References
  1. Whittingham, M.S., Chem. Rev., 2004, vol. 104, p. 4271.
  2. Fergus, J.W., J. Power Sources, 2010, vol. 195, p. 939.
  3. Scrosati, B. and Garche, J., J. Power Sources, 2010, vol. 195, p. 2419.
  4. Tarascon, J.M. and Armand, M., Nature, 2001, vol. 414, p. 359.
  5. Dunn, B., Kamath, H., and Tarascon, J.M., Science, 2011, vol. 334, p. 928.
  6. Manthiram, A., Fu, Y., Chung, S., Zu, C., and Su, Y., Chem. Rev., 2014, vol. 114, p. 11751.
  7. Manthiram, A., Fu, Y., and Su, Y., Acc. Chem. Res., 2012, vol. 46, p. 1125.
  8. Evers, S. and Nazar, L.F., Acc. Chem. Res., 2012, vol. 46, p. 1125.
  9. Ji, X. and Nazar, L.F., J. Mater. Chem., 2010, vol. 20, p. 9821.
  10. Bruce, P.G., Hardwick, L.J., and Abraham, K.M., MRS Bull., 2011, vol. 36, p. 506.
  11. Song, M.K., Cairns, E.J., and Zhang, Y., Nanoscale, 2013, vol. 5, p. 2186.
  12. Fang, R., Zhao, S., Sun, Z., Wang, D., Cheng, H., and Li, F., Adv. Mater., 2017, vol. 29, p. 1606823.
  13. Zhang, S.S., J. Power Sources, 2013, vol. 231, p. 153.
  14. Yin, Y., Xin, S., Guo, Y., and Wan, L., Angew. Chem. Int. Ed., 2013, vol. 52, p. 13186.
  15. Nazar, L.F., Cuisinier, M., and Pang, Q., MRS, Bull., 2014, vol. 39, p. 436.
  16. Ji, X., Lee, K.T., and Nazar, L.F., Nat. Mater., 2009, vol. 8, p. 500.
  17. Zhang, B., Qin, X., Li, G.R., and Gao, X.P., Energy Environ. Sci., 2010, vol. 3, p. 1531.
  18. Guo, J., Xu, Y., and Wang, C., Nano Lett., 2011, vol. 11, p. 4288.
  19. Zheng, G., Yang, Y., Cha, J.J., Hong, S.S., and Cui, Y., Nano Lett., 2011, vol. 11, p. 4462.
  20. Park, M., Yu, J., Kim, K.J., Jeong, G., Kim, J., Jo, Y., Hwang, U., Kang, S., Woo, T., and Kim, Y., Phys. Chem. Chem. Phys., 2012, vol. 14, p. 6796.
  21. Liu, Z., Yuan, X., Zhang, S., Wang, J., Huang, Q., Yu, N., Zhu, Y., Fu, L., Wang, F., Chen, Y., and Wu, Y., NPG Asia Mater., 2019, vol. 11, p. 12.
  22. Liang, X., Liu, Y., Wen, Z., Huang, L., Wang, X., and Zhang, H., J. Power Sources, 2011, vol. 196, p. 6951.
  23. Li, G., Li, G., Ye, S., and Gao, X., Adv. Energy Mater., 2012, vol. 2, p. 1238.
  24. Xiao, L., Cao, Y., Xiao, J., Schwenzer, B., Engelhard, M.H., Saraf, L.V., Nie, Z., Exarhos, G.J., and Liu, J., Adv. Mater., 2012, vol. 24, p. 1176.
  25. Zhang, Y., Bakenov, Z., Zhao, Y., Konarov, A., Doan, T.N.L., Malik, M., Paron, T., and Chen, P., J. Power Sources, 2012, vol. 208, p. 1.
  26. Fu, Y. and Manthiram, A., RSC Adv., 2012, vol. 2, p. 5927.
  27. Zhou, W., Yu, Y., Chen, H., DiSalvo, F.J., and Abruna, H.D., J. Am. Chem. Soc., 2013, vol. 135, p. 16736.
  28. Ma, X.Z., Jin, B., Wang, H.Y., Hou, J.Z., Zhong, X.B., Wang, H.H., and Xin, P.M., J. Electroanal. Chem., 2015, vol. 736, p. 127.
  29. Liang, X., Kwok, C.Y., Lodi-Marzano, F., Pang, Q., Cuisinier, M., Huang, H., Hart, C.J., Houtarde, D., Kaup, K., Sommer, H., Brezesinski, T., Janek, J., and Nazar, L.F., Adv. Energy Mater., 2016, vol. 6, p. 1501636.
  30. Pang, Q., Kundu, D., and Nazar, L.F., Mater. Horiz., 2016, vol. 3, p. 130.
  31. Liu, X., Huang, J., Zhang, Q., and Mai, L., Adv. Mater., 2017, vol. 29, p. 1601759.
  32. Huang, J., Zhang, Q., and Wei, F., Energy Storage Mater., 2015, vol. 1, p. 127.
  33. Deng, N., Kang, W., Liu, Y., Ju, J., Wu, D., Li, L., Hassan, B.S., and Cheng, B., J. Power Sources, 2016, vol. 331, p. 132.
  34. Jeong, T., Moon, Y.H., Chun, H., Kim, H.S., Cho, B.W., and Kim, Y., Chem. Commun., 2013, vol. 49, p. 11107.
  35. Chung, S. and Manthiram, A., Adv. Funct. Mater., 2014, vol. 24, p. 5299.
  36. Yao, H., Yan, K., Li, W., Zheng, G., Kong, D., Seh, Z.W., Narasimhan, V.K., Liang, Z., and Cui, Y., Energy Environ. Sci., 2014, vol. 7, p. 3381.
  37. Chung, S. and Manthiram, A., J. Phys. Chem. Lett., 2014, vol. 5, p. 1978.
  38. Huang, J., Zhuang, T., Zhang, Q., Peng, H., Chen, C., and Wei, F., ACS Nano, 2015, vol. 9, p. 3002.
  39. Bauer, I., Thieme, S., Brückner, J., Althues, H., and Kaskel, S., J. Power Sources, 2014, vol. 251, p. 417.
  40. Huang, J., Zhang, Q., Peng, H., Liu, X., Qian, W., and Wei, F., Energy, Environ. Sci., 2014, vol. 7, p. 347.
  41. Conder, J., Urbonaite, S., Streich, D., Novak, P., and Gubler, L., RSC Adv., 2015, vol. 5, p. 79654.
  42. Song, S., Shi, L., Lu, S., Pang, Y., Wang, Y., Zhu, M., Ding, D., and Ding, S., J. Membr. Sci., 2018, vol. 563, p. 277.
  43. Zhang, Z., Lai, Y., Zhang, Z., Zhang, K., and Li, J.,  Electrochim. Acta, 2014, vol. 129, p. 55.
  44. Li, J., Huang, Y., Zhang, S., Jia, W., Wang, X., Guo, Y., Jia, D., and Wang, L., ACS Appl. Mater. Int., 2017, vol. 9, p. 7499.
  45. Xiang, Y., Wang, Z., Qiu, W., Guo, Z., Liu, D., Qu, D., Xie, Z., Tang, H., and Li, J., J. Membr. Sci., 2018, vol. 563, p. 380.
  46. Cai, W., Li, G., He, F., Jin, L., Liu, B., and Li, Z., J. Power Sources, 2015, vol. 283, p. 524.
  47. Song, R., Fang, R., Wen, L., Shi, Y., Wang, S., and Li, F., J. Power Sources, 2016, vol. 301, p. 179.
  48. Yang, W., Yang, W., Feng, J., Ma, Z., and Shao, G., Electrochim. Acta, 2016, vol. 210, p. 71.
  49. Liu, M., Zhou, D., He, Y., Fu, Y., Qin, X., Miao, C., Du, H., Li, B., Yang, Q., Lin, Z., Zhao, T.S., and Kang, F., Nano Energy, 2016, vol. 22, p. 278.
  50. Choi, S., Song, J., Wang, C., Park, S., and Wang, G., Chem. Asian J., 2017, vol. 12, p. 1470.
  51. Gao, S., Wang, K., Wang, R., Jiang, M., Han, J., Gu, T., Cheng, S., and Jiang, K., J. Mater. Chem. A, 2017, vol. 5, p. 17889.
  52. Han, D., Liu, S., Liu, Y., Zhang, Z., Li, G., and Gao, X., J. Mater. Chem. A, 2018, vol. 6, p. 18627.
  53. Huang, H., Ding, F., Zhong, H., Li, H., Zhang, W., Liu, X., and Xu, Q., J. Mater. Chem. A, 2018, vol. 6, p. 9539.
  54. Zhang, A., Fang, X., Shen, C., Liu, Y., Seo, I.G., Ma, Y., Chen, L., Cottingham, P., and Zhou, C., Nano, Res., 2018, vol. 11, p. 3340.
  55. Chen, D., Wen, K., Lv, W., Wei, Z., and He, W., Phys. Status Solidi RRL., 2018, vol. 12, p. 1800249.
  56. Song, J., Zhang, C., Guo, X., Zhang, J., Luo, L., Liu, H., Wang, F., and Wang, G., J. Mater. Chem. A, 2018, vol. 6, p. 16610.
  57. Ghazi, Z.A., He, X., Khattak, A.M., Khan, N.A., Liang, B., Iqbal, A., Wang, J., Sin, H., Li, L., and Tang, Z., Adv. Mater., 2017, vol. 29, p. 1606817.
  58. He, J., Chen, Y., and Manthiram, A., Energy Environ. Sci., 2018, vol. 11, p. 2560.
  59. Lee, D.H., Ahn, J.H., Park, M., Eftekhari, A., and Kim, D., Electrochim. Acta, 2018, vol. 283, p. 1291.
  60. Yuan, L., Yuan, H., Qiu, X., Chen, L., and Zhu, W., J. Power Sources, 2009, vol. 189, p. 1141.
  61. Chen, J., Zhang, Q., Shi, Y., Qin, L., Cao, Y., Zheng, M., and Dong, Q., Phys. Chem. Chem. Phys., 2012, vol. 14, p. 5376.
  62. Cheng, X., Huang, J., Zhang, Q., Peng, H., Zhao, M., and Wei, F., Nano Energy, 2014, vol. 4, p. 65.
  63. Li, X. and Sun, X., Adv. Funct. Mater., 2018, vol. 28, p. 1801323.
  64. Li, B., Xu, H., Ma, Y., and Yang, S., Nanoscale Horiz., 2018, vol. 4, p. 77.
  65. Jiang, Y., Chen, F., Gao, Y., Wang, Y., Wang, S., Gao, Q., Jiao, Z., Zhao, B., and Chen, Z., J. Power Sources, 2017, vol. 342, p. 929.
  66. Chen, G., Song, X., Wang, S., Wang, Y., Gao, T., Ding, L., and Wang, H., J. Membr. Sci., 2018, vol. 548, p. 247.
  67. Zhang, L., Wang, Y., Niu, Z., and Chen, J., Carbon, 2019, vol. 141, p. 400.
  68. Kreuer, K.D., J. Membr. Sci., 2001, vol. 185, p. 29.
  69. Mauritz, K.A. and Moore, R.B., Chem. Rev., 2004, vol. 104, p. 4535.
  70. Jin, Z., Xie, K., Hong, X., Hu, Z., and Liu, X., J. Power Sources, 2012, vol. 218, p. 163.
  71. Zhang, S.S., Tran, D.T., and Zhang, Z., J. Mater. Chem. A, 2014, vol. 2, p. 18288.
  72. Li, M., Wang, C., Miao, L., Xiang, J., Wang, T., Yuan, K., Chen, J., and Huang, Y., J. Mater. Chem. A, 2018, vol. 6, p. 5862.
  73. Wang, L., He, Y., Shen, L., Lei, D., Ma, J., Ye, H., Shi, K., Li, B., and Kang, F., Nano Energy, 2018, vol. 50, p. 367.
  74. Pang, Y., Wei, J., Wang, Y., and Xia, Y., Adv. Energy Mater., 2018, vol. 8, p. 1702288.
  75. Guan, Y., Wang, A., Liu, S., Li, Q., Wang, W., and Huang, Y., J. Alloy. Compd., 2018, vol. 765, p. 544.
  76. Lee, D.H., Ahn, J.H., Park, M., Eftekhari, A., and Kim, D., Electrochim. Acta, 2018, vol. 283, p. 1291.
  77. Ryou, M., Lee, D.J., Lee, J., Lee, Y.M., Park, J., and Choi, J.W., Adv. Energy Mater., 2012, vol. 2, p. 645.
  78. Luo, W., Zhou, L., Fu, K., Yang, Z., Wan, J., Manno, M., Yao, Y., Zhu, H., Yang, B., and Hu, L., Nano Lett., 2015, vol. 15, p. 6149.
  79. Wu, F., Yuan, Y., Cheng, X., Bai, Y., Li, Y., Wu, C., and Zhang, Q., Energy Storage Mater., 2018, vol. 15, p. 148.
  80. Liu, K., Bai, P., Bazant, M.Z., Wang, C., and Li, J., J. Mater. Chem. A, 2017, vol. 5, p. 4300.
  81. Wang, Q., Wen, Z., Jin, J., Guo, J., Huang, X., Yang, J., and Chen, C., Chem. Commun., 2016, vol. 52, p. 1637.
  82. Liu, M., Jiang, H.R., Ren, Y.X., Zhou, D., Kang, F.Y., and Zhao, T.S., Electrochim. Acta, 2016, vol. 213, p. 871.
  83. Song, A., Huang, Y., Zhong, X., Cao, H., Liu, B., Lin, Y., Wang, M., and Li, X., J. Membr. Sci., 2018, vol. 556, p. 203.
  84. Du, H., Li, S., Qu, H., Lu, B., Wang, X., Chai, J., Zhang, H., Ma, J., Zhang, Z., and Cui, G., J. Membr. Sci., 2018, vol. 550, p. 399.
  85. Yang, D., He, L., Liu, Y., Yan, W., Liang, S., Zhu, Y., Fu, L., Chen, Y., and Wu, Y., J. Mater. Chem. A, 2019, vol. 7, pp. 13679–13686. https://doi.org/10.1039/C9TA03123E
  86. Qu, H., Zhang, J., Du, A., Chen, B., Chai, J., Xue, N., Wang, L., Qiao, L., Wang, C., Zang, X., Yang, J., Wang, X., and Cui, G., Adv. Sci., 2018, vol. 5, p. 1700503.
  87. Zhao, Y., Zhang, Y., Gosselink, D., Doan, T.N.L., Sadhu, M., Cheang, H., and Chen, P., Membranes, 2012, vol. 2, p. 553.
  88. Huang, S., Guan, R., Wang, S., Xiao, M., Han, D., Sun, L., and Meng, Y., Prog. Polym. Sci., 2019, vol. 89, p. 19.