Статья
2019

Influence of NaI Additions on the Electrical, Dielectric, and Transport Properties in the GeS2–Ga2S3–NaI Glass System


O. Bosak O. Bosak , A. Castro A. Castro , V. Labas V. Labas , V. Trnovcova V. Trnovcova , P. Kostka P. Kostka , L. Calvez L. Calvez , D. Le Coq D. Le Coq , M. Kubliha M. Kubliha
Российский электрохимический журнал
https://doi.org/10.1134/S1023193519060053
Abstract / Full Text

The vitreous system GeS2–Ga2S3 can incorporate a large amount of alkali salts, for example NaI, and such materials have a potential to be used as solid electrolytes for all-solid-state batteries. The present work focuses on the effects of NaI addition in the (GeS2)x(Ga2S3)100 –x glass matrix, where x = 65, 72, 80, and 88. AC and DC electrical and dielectric properties were measured in the temperature range from 20 up to 200°C and in the frequency range 1 Hz–100 kHz, in air, at different temperatures by steps of 1°C. The values of electrical conductivity significantly increase with increasing of NaI content. The DC conductivity values 2.5 × 10–4 S m–1 at room temperature were detected for glasses with 25 and 30 mol % of NaI in (GeS2)72(Ga2S3)28 and with 30 mol % NaI in (GeS2)65(Ga2S3)35 matrices. Samples with NaI concentration higher than 20 mol % show a poor stability against moisture. In order to improve their stability the glass composition was modified by addition of 2.5 mol % P2S5 in the system. The activation energy values slightly decrease with NaI content. The GeS2/Ga2S3 ratio and P2S5 addition to the glass matrix have low effect on transport properties. The DC conductivity, electrical relaxation, and depolarization mechanisms are similar. Electrical charge transfer is connected with hopping of Na+ ions or reorientation of dipoles containing these ions.

Author information
  • Faculty of Materials Science and Technology, Slovak University of Technology, 91724, Trnava, Slovakia

    O. Bosak, V. Labas & M. Kubliha

  • Université de Rennes 1, Institut des Sciences Chimiques de Rennes , Eq. Verres et Céramiques, UMR CNRS 6226, Campus de Beaulieu, 35042, Rennes, France

    A. Castro, L. Calvez & D. Le Coq

  • University of Constantin the Philosopher in Nitra, Department of Physics, 94974, Nitra, Slovakia

    V. Trnovcova

  • Laboratory of Inorganic Materials, joint workplace of the University of Chemistry and Technology Prague and the Institute of Rock Structure and Mechanics of the CAS, 18209, Prague 8, Czech Republic

    P. Kostka

References
  1. Chen, F., Yua, Q., Qiao, B., Xu, T., Dai, S., and Ji, W., Investigations of structure and nonlinear optical properties of gold doped germanium-gallium-sulfur chalcogenide glasses, J. Non-Cryst. Solids, 2015, vol. 412, pp. 30–34.
  2. Adam, J.L., Zhang, X.H., Shiryaev, V.S., Churbanov, M.F., Bureau, B., Lucas, P., Musgraves, J.D., Danto, S., Richardson, K., Sanghera, J., Gibson, D., Tanaka, K., Pradel, A., Ribes, M., Shpotyuk, O., Golovchak, R., Kozdras, A., Orava, J., Kohoutek, T., Wagner, T., Calvez, L., Heo, Chung, W.J., Boussard-Plédel, C., Troles, J., Brilland, L., Pant, R., Eggleton, B.J., Hewak, D.W., Nazabal, V., Kityk, I., Jain, H., Kovalskiy, A., Vlcek, M., Hyot, B., Tatsumisago, M., and Hayashi, A., Chalcogenide Glasses: Preparation, Properties and Applications. in Chalcogenide Glasses, Adam, J.-L. and Zhang, X., Eds., Woodhead Publ., 2014.
  3. Agrawal, G., Applications of Nonlinear Fiber Optics, Acad. Press, 2008.
  4. Bréhault, A., Cozic, S., Boidin, R., Calvez, L., Bychkov, E., Masselin, P., Zhang, X., and Le Coq, D., Influence of NaX (X = I or Cl) additions on GeS2–Ga2S3 based glasses, J. Solid State Chem., 2014, vol. 220, pp. 238–244.
  5. Guo, H., Zhai, Y., Tao, H., Dong, G., and Zhao, X., Mater. Sci. Eng. B Solid, 2007, vol. 138, pp. 235–240.
  6. Tverjanovich, A., Tveryanovich, Y.S., and Loheider, S., J. Non-Cryst. Solids, 1996, vol. 208, pp. 49–55.
  7. Masselin, P., LeCoq, D., Cuisset, A., and Bychkov, E., Opt. Mater. Exp., 2012, vol. 2, no. 12, pp. 1768–1775.
  8. Pethes, I., Nazabal, V., Chahal, R., Bureau, B., Kaban, I., Belin, S., and Jovari, P., Local motifs in GeS2–Ga2S3 glasses, J. Alloys Compd., 2016, vol. 673, pp. 149–157.
  9. Loireau-Lozac’h, A.M., Keller-Besrest, F., and Bénazeth, S., Short and medium range order in Ga–Ge–S glasses: an X-ray absorption spectroscopy study at room and low temperatures, J. Solid State Chem., 1996, vol. 123, pp. 60–67.
  10. Yao, W.L. and Martin, S.W., Ionic conductivity of glasses in the MI + M2S + (0.1Ga2S3 + 0.9GeS2) system (M = Li, Na, K and Cs), Solid State Ionics, 2008, vol. 178, nos. 33–34, pp. 1777–1784.
  11. Tver’yanovich, Y.S., Aleksandrov, V.V., Murin, I.V., and Nedoshovenko, E.G., Glass forming ability and cationic transport in gallium containing chalcohalide glasses, J. Non-Cryst. Solids, 1999, vols. 256–257, pp. 237–241.
  12. Kolař, J., Wágner, T., Zima, V., Stehlík, Š., Frumarová, B., Beneš, L., Vlček, M., Frumar, M., and Kasap, S.O., Ion conductive chalcohalide glasses in LiI–Ga2S3–GeS2 system, J. Non-Cryst. Solids, 2011, vol. 357, nos. 11–13, pp. 2223–2227.
  13. Takada, K., Inada, T., Kajiyama, A., Kouguchi, M., Sasaki, H., Kondo, S., Michiue, Y., Nakano, S., Tabuchi, M., and Watanabe, M., Solid State Ionics, 2004, vol. 172, pp. 25–30.
  14. Hayashi, A., Noi, K., Sakuda, A., and Tatsumisago, M., Nat. Commun., 2012, vol. 3, p. 856.
  15. Bychkov, E., Tveryanovich, Y., and Vlasov, Y., in Applications of Chalcogenide Glasses, Semiconductors and Semi-metals Series, Fairman, R. and Ushkov, B., Eds., New York-London: Elsevier, 2004.
  16. Furmar M. and Wagner, T., Curr. Opin. Solid State Mater. Sci., 2003, vol. 7, p. 117.
  17. Patil, D.S., Konale, M.S., Kolar, J., Shimakawa, K., Zima, V., and Wagner, T., Ionic conductivity study of LiI–Ga2S3–GeS2 chalcogenide glasses using a random-walk approach, Pure Appl. Chem., 2015, vol. 87, no. 3, pp. 249–259.
  18. Judez, X., Zhang, H., Li, C., Eshetu, G.G., Gonzalez-Marcos, J.A., Armand, M., and Rodriguez-Martinez, L.M., Review solid electrolytes for safe and high energy density lithium-sulfur batteries: promises and challenges, J. Electrochem. Soc., 2018, vol. 165, pp. A6008–A6016.
  19. Manthiram, A., Yu, X., and Wang, S., Lithium battery chemistries enabled by solid state electrolytes, Nat. Rev. Microbiol., 2017, vol. 2, p. 16103.
  20. Lin, Z. and Liang, C., Lithium-sulfur batteries: from liquid to solid cells, J. Mater. Chem. A, 2015, vol. 3, pp. 936–958.
  21. Fan, B., et al., Ionic conductive GeS2–Ga2S3–Li2S–LiI glass powders prepared by mechanical synthesis, J. Alloys Compd., 2018, vol. 740, pp. 61–67.
  22. Kato, Y., Hori, S., Saito, T., Suzuki, K., Hirayama, M., Mitsui, A., Yonemura, M., Iba, H., and Kanno, R., High-power all-solid-state batteries using sulfide superionic conductors, Nat. Energy, 2016, vol. 1, p. 16030.
  23. Seino, Y., Ota, T., Takada, K., Hayashi, A., and Tatsumisago, M., A sulphide lithium superion conductor is superior to liquid ion conductors for use in rechargeable batteries, Energy Environ. Sci., 2014, vol. 7, pp. 627–631.
  24. Kamaya, N., Homma, K., Yamakawa, Y., Hirayama, M., Kanno, R., Yonemura, M., Kamiyama, T., Kato, Y., Hama, S., Kawamoto, K., and Mitsui, A., A lithium superionic conductor, Nat. Mater., 2011, vol. 10, pp. 682–686.
  25. Yamashita, M. and Yamanaka, H., Formation and ionic conductivity of Li2S–GeS2–Ga2S3 glasses and thin films, Solid State Ionics, 2003, vol. 158, pp. 151–156.
  26. Jiang, Ch., Li, H., and Wanga, Ch., Recent progress in solid-state electrolytes for alkali-ion batteries, Sci. Bull., 2017, vol. 62, pp. 1473–1490.
  27. Paraskiva, A., Bokova, M., and Bychkov, E., Na+ ion conducting glasses in the NaCl–Ga2S3–GeS2 system: a critical percolation regime, Solid State Ionics, 2017, vol. 299, pp. 2–7.
  28. Borisova, Z.U., Bychkov, E.A., and Tver’yanovich, Y.S., Interaction of Metals with Chalcogenide Glasses, Leningrad: Leningrad State Univ., 1991.
  29. Yao, W. and Martin, S.W., Solid State, Ionics, 2008, vol. 78, pp. 1777–1784.
  30. Martin, S.W., Bischoff, C., and Schuller, K., J. Phys. Chem., 2015, vol. 119, no. 51, pp. 15738–15751.
  31. Kalužný, J., Kubliha, M., Labaš, V., Poulain, M., and Taibi, Y., J. Non-Cryst. Solids, 2009, vol. 355, nos. 37–42, pp. 2031–2034.
  32. Kubliha, M., Soltani, M.T., Trnovcová, V., Legouera, M., Labaš, V., Kostka, P., Le Coq, D., and Hamzaoui, M., J. Non-Cryst. Solids, 2015, vol. 428, pp. 42–48.
  33. Labaš, V., Poulain, M., Kubliha, M., Trnovcová, V., and Goumeidane, F., J. Non-Cryst. Solids, 2013, vol. 377, pp. 66–69.
  34. Moynihan, C.T., Bosech, L.P., and Laberge, N.L., Phys. Chem. Glasses, 1973, vol. 14, p. 122.
  35. Molak, A., Paluch, M., Pawlus, S, Klimontko, J., Ujma, Z., and Gruszka, I., J. Phys. D: Appl. Phys., 2005, vol. 38, p. 1450.
  36. Davidson, D.W. and Cole, R.H., J. Chem. Phys., 1950, vol. 18, p. 1417.