Examples



mdbootstrap.com



 
Статья
2018

Application of 1,4-Diaminoanthraquinone as a New Sensing Material for Fabrication of a Iron(III)-Selective Modified Carbon Paste Electrode


Hadi GhohariHadi Ghohari, Hassan Ali ZamaniHassan Ali Zamani, Fatemeh Joz-YarmohammadiFatemeh Joz-Yarmohammadi, Mahmoud EbrahimiMahmoud Ebrahimi, Mohammad Reza AbediMohammad Reza Abedi
Российский электрохимический журнал
https://doi.org/10.1134/S1023193518100038
Abstract / Full Text

In the present work, a novel sensitive electrochemical potentiometric sensor for sensing Fe3+ ions based on 1,4-diaminoanthraquinone (DAQ) as a hydrophobic selector element was prepared to implement as an ion selective carbon paste electrode in the aqueous solutions. The adequate amounts of ionophore (5%), paraffin oil (25%) as a binder, Nanosilica (NS: 0.5%) multi-wall carbon nanotubes (MWCNTs: 1%) as a modifier, and graphite powder (68.5%) as an inert matrix was occupied to form the paste. This new FeCP sensor demonstrated a Nernstian slope of 19.7 ± 0.7 mV per decade over widish linear range between 1.0 × 10–8 to 1.0 × 10–2 mol L–1 at working pH range of 1.9–5.0 in the optimized conditions. The average elapsed time to response of electrode was about ~6 s for concentrations from lower (1.0 × 10−8 mol L–1) to higher (1.0 × 10−2 mol L–1) of Fe3+ ion solution. The selectivity of electrode toward Fe3+ ions in comparison with other cations was studied by matched potential method. The making FeCP sensor has been put to use successfully as an indicator electrode in analytical applications such as the potentiometric titration and determination of iron(III) ion in blend of different ions.

Author information
  • Department of Applied Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, IranHadi Ghohari, Hassan Ali Zamani, Fatemeh Joz-Yarmohammadi & Mahmoud Ebrahimi
  • Department of Applied Chemistry, Quchan Branch, Islamic Azad University, Quchan, IranMohammad Reza Abedi
References
  1. Lieu, P.T., Heiskala, M., Peterson, P.A., and Yang, Y., The roles of iron in health and disease, Mol. Aspects Med., 2000, vol. 22, p. 1.
  2. Li, B., Sun, Y., and Yin, M.J., Determination of cerium, neodymium and samarium in biological materials at low levels by isotope dilution inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom., 1999, vol. 14, p. 1843.
  3. Shibata, N., Fudagawa, N., and Kubota, M., Electrothermal vaporization using a tungsten furnace for the determination of rare-earth elements by inductively coupled plasma mass-spectrometry, Anal. Chem., 1991, vol. 63, p. 636.
  4. Liu, Y.M., Determination of Main Components in Nd–Fe–B Magnetic Materials by ICP-AES, Spectrosc. Spect. Anal., 2004, vol. 24, p. 1257.
  5. Mazzucotelli, A., DePaz, F., Magi, E., and Frache, R., Interferences of major elements in the determination of rare earth elements by inductively coupled plasma atomic emission spectroscopy, Anal. Sci., 1992, vol. 8, p. 189.
  6. Sonke, J.E. and Salters, V.J.M., Determination of neodymium–fulvic acid binding constants by capillary electrophoresis inductively coupled plasma mass spectrometry (CE-ICP-MS), J. Anal. At. Spectrosc., 2004, vol. 19, p. 235.
  7. Faridbod, F., Ganjali, M.R., Pirali-Hamedani, M., and Norouzi, P., MWCNTs-ionic liquids-ionophoregraphite nanocomposite based sensor for selective determination of ytterbium(III) ion, Int. J. Electrochem. Sci., 2010, vol. 5, p. 1103.
  8. Ganjali, M.R., Khoshsafar, H., Faridbod, F., Shirzadmehr, A., Javanbakht, M., and Norouzi, P., Room temperature ionic liquids (RTILs) and multiwalled carbon nanotubes (MWCNTs) as modifiers for improvement of carbon paste ion selective electrode response; A comparison study with PVC membrane, Electroanalysis, 2009, vol. 21, p. 2175.
  9. Ganjali, M.R., Motakef-Kazami, N., Faridbod, F., Khoee, S., and Norouzi, P., Determination of Pb2+ ions by a modified carbon paste electrode based on multi-walled carbon nanotubes (MWCNTs) and nanosilica, J. Hazard. Mater., 2010, vol. 173, p. 415.
  10. Riahi, S., Faridbod, F., Ganjali, and M.R., Caffeine sensitive electrode and its analytical applications, Sens. Lett., 2009, vol. 7, p. 42.
  11. Zamani, H.A., Ganjali, M.R., Behmadi, H., and Behnajady, M.A., Fabrication of an iron(III) PVC-membrane sensor based on bis-benzilthiocarbohydrazide as a selective sensing material, Mater. Sci. Eng., C, 2009, vol. 29, p. 1535.
  12. Shirdel, A., Zamani, H.A., Joz-Yarmohammadi, F., Beyramabadi, S.A., and Abedi, M.R., J. Incl. Phenom. Macrocycl. Chem., 2016, vol. 86, p. 351.
  13. Ganjali, M.R., Tavakoli, M., Faridbod, F., Riahi, S., Norouzi, P., and Salavati-Niassari, M., Interaction study of a new bis-bidentate Schiff’s base with some metal ions and its application in fabrication of Sm(III) potentiometric membrane sensor, Int. J. Electrochem. Sci., 2008, vol. 3, p. 1559.
  14. Gupta, V.K., Jain, A.K., Agarwal, S., and Maheshwari, G., An iron(III) ion-selective sensor based on a μ-bis(tridentate) ligand, Talanta, 2007, vol. 71, p. 1964.
  15. Zamani, H.A., Ganjali, M.R., Faridbod, F., and Salavati-Niasari, M., Heptadentate Schiff-base based PVC membrane sensor for Fe(III) ion determination in water samples, Mater. Sci. Eng., C, 2012, vol. 32, p. 564.
  16. Zamani, H.A., Imani, A., Arvinfar, A., Rahimi, F., Ganjali, M.R., Faridbod, F., and Meghdadi, S., Neodymium( III)–PVC membrane sensor based on a new four dentate ionophore, Mater. Sci. Eng., C, 2011, vol. 31, p. 588.
  17. Zamani, H.A., Rajabzadeh, G., Masrornia, M., Dejbord, A., and Ganjali, M.R., Determination of Cr3+ ions in biological and environmental samples by a chromium(III) membrane sensor based on 5-amino-1-phenyl-1H-pyrazole-4-carboxamide, Desalination, 2009, vol. 249, p. 560.
  18. Zamani, H.A., Ganjali, M.R., Norouzi, P., Tadjarodi, A., and Shahsavani, E., Determination of terbium(III) ions in phosphate rock samples by a Tb3+–PVC membrane sensor based on N,N-Dimethyl-N′,N″-bis(4-methoxyphenyl)phosphoramidate, Mater. Sci. Eng., C, 2008, vol. 28, p. 1489.
  19. Masrournia, M., Zamani, H.A., Mirrashid, H.A., Ganjali, M.R., and Faridbod, F., Di-tert-butylazodicarboxylate based PVC membrane sensor for Fe(III) ion measurement in pharmaceutical formulation, Mater. Sci. Eng., C, 2011, vol. 31, p. 574.
  20. Zamani, H.A., Mohammadhossieni, M., Haji-Mohammadrezazadeh, S., Faridbod, F., Ganjali, M.R., Meghdadi, S., and Davoodnia, A., Gadolinium(III) ion selective sensor using a new synthesized Schiff’s base as a sensing material, Mater. Sci. Eng., C, 2012, vol. 32, p. 712.
  21. Zamani, H.A., Malekzadegan, F., and Ganjali, M.R., Highly selective and sensitive thiocyanate membrane electrode based on nickel(II)-1,4,8,11,15,18,22,25-octabutoxyphthalocyanine, Anal. Chim. Acta, 2006, vol. 555, p. 336.
  22. Zamani, H.A., Nekoei, M., Mohammadhosseini, M., and Ganjali, M.R., Construction of Tm3+-PVC membrane sensor based on 1-(2-thiazolylazo)-2-naphthol as sensing material, Mater. Sci. Eng., C, 2010, vol. 30, p. 480.
  23. Zamani, H.A., Feizyzadeh, B., Faridbod, F., and Ganjali, M.R., Thulium(III) sensor based on a derivative of thiourea doped in polymeric membrane, Sens. Lett., 2011, vol. 9, p. 1767.
  24. Zamani, H.A., Abedini-Torghabeh, J., and Ganjali, M.R., A Highly selective and sensitive barium(II)-selective PVC membrane based on dimethyl 1-acetyl-8-oxo-2,8-dihydro-1H-pyra-zolo[5,1-a]isoindole-2,3-dicarboxylate, Electroanalysis, 2006, vol. 18, p. 888.
  25. Zamani, H.A., Kamjoo, R., Mohammadhossieni, M., Zaferoni, M., Rafati, Z., Ganjali, M.R., Faridbod, F., and Meghdadi, S., Europium(III) PVC membrane sensor based on N-pyridine-2-carboxamido-8-aminoquinoline as a sensing material, Mater. Sci. Eng., C, 2012, vol. 32, p. 447.
  26. Ganjali, M.R., Poursaberi, T., Basiripour, F., Salavati-Niasari, M., Yousefi, M., and Shamsipur, M., Highly selective thiocyanate poly(vinyl chloride) membrane electrode based on a cadmium–Schiff’s base complex, Fresenius’. J. Anal. Chem., 2001, vol. 370, p. 1091.
  27. Zamani, H.A., Rajabzadeh, G., Ganjali, M.R., and Khatami, S.M., Highly selective and sensitive copper( II) membrane sensors based on 6-methyl-4-(1-phenylmethylidene)amino-3-thioxo-1,2,4-triazin-5-one as a new neutral ionophore, Electroanalysis, 2005, vol. 17, p. 2260.
  28. Sharma, H.K. and Sharma, N., Potentiometric sensor for gadolinium(III) ion based on zirconium(IV) tungstophosphate as an electroactive material, E-J. Chem., 2009, vol. 6, p. 1139.
  29. Zamani, H.A., Naghavi-Reyabbi, F., Mohammadhossieni, M., Feizyzadeh, B., Abedi, M.R., Faridbod, F., and Ganjali, M.R., Quantitative monitoring of thulium ions by a new thulium selective polymeric membrane sensor, Sens. Lett., 2012, vol. 10, p. 112.
  30. Zamani, H.A., Feizyzadeh, B., Faridbod, F., and Ganjali, M.R., Application of 1-ethyl-3-(2,5-dihydro-4-(3,5-dimethyl-1H-pyrazol-4-yl)-5-oxo-1H-pyrazol-3-yl)thiourea as sensing material for construction of Tm3+-PVC membrane sensor, Mater. Sci. Eng., C, 2011, vol. 31, p. 1379.
  31. Fekri, M.H., Khanmohammadi, H., and Darvishpour, M., An electrochemical Cr(III)-selective sensor-based on a newly synthesized ligand and optimization of electrode with a nano particle, Int. J. Electrochem. Sci., 2011, vol. 6, p. 1679.
  32. Zamani, H.A., Zabihi, M.S., Rohani, M., Zangeneh-Asadabadi, A., Ganjali, M.R., Faridbod, F., and Meghdadi, S., Quantitative monitoring of terbium ion by a Tb3+ selective electrode based on a new Schiff’s base, Mater. Sci. Eng., C, 2011, vol. 31, p. 409.
  33. Gupta, V.K., Goyal, R.N., and Sharma, R.A., Novel PVC membrane based alizarin sensor and its application; determination of vanadium, zirconium and nolybdenum, Int. J. Electrochem. Sci., 2009, vol. 4, p. 156.
  34. Mittal, S.K., Kumar, P., Kumar, S.K.A., and Lindoy, L.F., A comparative study of linked 2,2′-dipyridylamine ligand system as an ion selective electrode for Ag(I) ions, Int. J. Electrochem. Sci., 2010, vol. 5, p. 1984.
  35. Zamani, H.A., Rohani, M., Mohammadhosseini, M., Ganjali, M.R., Faridbod, F., and Meghdadi, S., Quantitative monitoring of erbium ion in alloy samples by a erbium selective sensor, Sens. Lett., 2011, vol. 9, p. 1745.
  36. Ganjali, M.R., Rezapour, M., Pourjavid, M.R., and Haghgoo, S., ppt level detection of samarium(III) with a coated graphite sensor based on an antibiotic, Anal. Sci., 2004, vol. 20, p. 1007.
  37. Zamani, H.A., Naghavi-Reyabbi, F., Faridbod, F., Mohammadhosseini, M., Ganjali, M.R., Tadjarodi, A., and Rad, M., Fabrication of a PVC membrane samarium( III) sensor based on N,N′,N″-tris(4-pyridyl)trimesic amide as a selectophore, Mater. Sci. Eng., C, 2013, vol. 33, p. 870.
  38. Faridbod, F., Zamani, H.A., Hosseini, M., Pirali-Hamedani, M., Ganjali, M.R., and Norouzi, P., Praseodymium selective carbon paste electrode based on carbon nanotubes and ionic liquids, Int. J. Electrochem. Sci., 2011, vol. 6, p. 3694.
  39. Zamani, H.A. and Faridbod, F., Liquid membrane potentiometric sensor for determination of Fe3+ ion, J. Anal. Chem., 2014, vol. 69, p. 1073.
  40. Zamani, H.A., Faridbod, F., and Ganjali, M.R., Dysprosium selective potentiometric membrane sensor, Mater. Sci. Eng., C, 2013, vol. 33, p. 608.
  41. Zaheiritousi, N., Zamani, H.A., Abedi, M.R., and Meghdadi, S., Int. J. Electrochem. Sci., 2017, vol. 12, p. 2647.
  42. Mirzaee, A., Zamani, H.A., Abedi, M.R., Motavalizadehkakhky, A., and Meghdadi, S., Int. J. Electrochem. Sci., 2017, vol. 12, p. 8315.
  43. Ganjali, M.R., Tahami, M., Shamsipur, M., Poursaberi, T., Haghgoo, S., and Hosseini, M., Differential pulse anodic stripping voltammetric determination of cobalt(II) with N-p-chlorophenylcinnamohydroxamic acid modified carbon paste electrode, Electroanalysis, 2003, vol. 15, p. 1038.
  44. Zamani, H.A., Hamed-Mosavian, M.T., Hamidfar, E., Ganjali, M.R., and Norouzi, P., A novel iron(III)-PVC membrane potentiomeric sensor based on N-(2-hydroxyethyl)ethylenediamine-N,N′,N′′-triacetic acid, Mater. Sci. Eng., C, 2008, vol. 28, p. 1551.
  45. Gupta, V.K., Jain, A.K., Agarwal, S., and Maheshwari, G., An iron(III) ion-selective sensor based on a μ-bis(tridentate) ligand, Talanta, 2007, vol. 71, p. 1964.
  46. Joz-Yarmohammadi, F., Zamani, H.A., and Mohammadabadi, F., Improvement of a Lu3+ carbon paste electrode based on MWCNT/nanosilica/binder/ionophore nanocomposite, Int. J. Electrochem. Sci., 2015, vol. 10, p. 8124.
  47. Zamani, H.A., Masrournia, M., Rostame-Faroge, M., Ganjali, M.R., and Behmadi, H., Construction of nickel(II) PVC membrane electrochemical sensor based on 5-nethoxy-5,6-diphenyl-4,5 dihydro-3(2H)-pyridazinethione as a novel ionophore, Sens. Lett., 2008, vol. 6, p. 759.
  48. Zamani, H.A., Masrournia, M., Mohamadzadeh, H., Ganjali, M.R., Rahimizadeh, M., and Ziaei, P., 2,3-diphenylquinoxaline-4′,4′′-dioxytriethylene glycol as a sensing and selective material for construction of strontium-PVC membrane sensor, Mater. Sci. Eng., C, 2009, vol. 29, p. 976.
  49. Suzuki, K., Yamada, H., Sato, K., Watanabe, K., Hisamoto, H., Tobe, Y., and Kobiro, K., Design and synthesis of highly selective ionophores for lithium ion based on 14-crown-4 derivatives for an ion-selective electrode, Anal. Chem., 1993, vol. 65, p. 3404.
  50. Ghasediana, F., Zamani, H.A., Joz-Yarmohammadi, F., Beyramabadi, S.A., and Abedi, M.R., Russ. J. Appl. Chem., 2016, vol. 89, p. 2001.
  51. Shamsipur, M., Rouhani, S., Shaghi, H., Ganjali, M.R., and Eshghi, H., Strontium-selective membrane electrodes based on some recently synthesized benzo-substituted macrocyclic diamides, Anal. Chem., 1999, vol. 71, p. 4938.
  52. Mohammadabadi, F., Zamani, H.A., Joz-Yarmohammadi, F., and Abedi, M.R., Fabrication of a Tb3+ carbon paste ion selective electrode by using nanosilica and multi-walled carbon nanotubes (MWCNTs), Int. J. Electrochem. Sci., 2015, vol. 10, p. 2791.
  53. Zamani, H.A., Ganjali, M.R., Norouzi, P., and Adib, M., Strontium PVC-membrane sensor based on 2-[(2-mercaptophenylimino) methyl]phenol, Mater. Sci. Eng., C, 2008, vol. 28, p. 157.
  54. Ganjali, M.R., Daftari, A., Nourozi, P., and Salavati- Niasari, M., Novel Y(III) PVC-based membrane microelectrode based on a new S–N Schiff’s base, Anal. Lett., 2003, vol. 36, p. 1511.
  55. Zamani, H.A., Rohani, M., Zangeneh-Asadabadi, A., Zabihi, A.S., Ganjali, M.R., and Salavati-Niasari, M., A novel lutetium(III) PVC membrane sensor based on a new symmetric S–N Schiff’s base for Lu(III) analysis in real sample, Mater. Sci. Eng., C, 2010, vol. 30, p. 917.
  56. Yu Qin, H., Peper, S., and Bakker, E., Plasticizer-free polymer membrane ion-selective electrodes containing a methacrylic copolymer matrix, Electroanalysis, 2002, vol. 14, p. 1375.
  57. Faridbod, F., Davarkhah, N., Beikzadeh, M., Yekefallah, M., and Rezapour, M., Cu2+-selective sensors based on a new ion-carrier and their application for the analysis of copper content of water samples, Int. J. Electrochem. Sci., 2017, vol. 12, p. 876.
  58. Zamani, H.A., Shoshtari, M., and Feizyzadeh, B., Int. J. Electrochem. Sci., 2015, vol. 10, p. 8644.