
Ion conductivity of perovskites CaZr1 – x Sc x O3 – α (x = 0.03–0.20) in hydrogen-containing atmospheres



Российский электрохимический журнал
https://doi.org/10.1134/S1023193516110069
The total, proton, and oxygen conductivities in the CaZr1–x Sc x O3–α system (x = 0.03–0.20) were studied experimentally in the reductive atmospheres H2 + H2O + N2 in the temperature range 600–900°C. The electric conductivity and the transport numbers of ions and protons were measured using the direct current four-probe method and the EMF method with oxygen and water vapor concentration cells, respectively. The materials under study are pure proton-conductive below 700°C in these atmospheres; at higher temperatures, a pronounced contribution of oxygen conductivity appears. The isotherms of the total and partial conductivities are symbatic and have a maximum between x = 0.05 and x = 0.10, which correlates with the position of the boundary of the single-phase state.
- Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620137, RussiaV. P. Gorelov, V. B. Balakireva & A. V. Kuz’min
- Ural Federal University named after the first President of Russia B.N. Yeltsin, Yekaterinburg, 620002, RussiaA. V. Kuz’min
- Kreuer, K.D., Chem. Mater., 1996, vol. 8, p. 610.
- Pal’guev, S.F., Vysokotemperaturnye protonnye tverdye elektrolity (High-Temperature Proton Solid Electrolytes), Yekaterinburg: Ural Branch, Russian Academy of Sciences, 1998.
- Norby, T., Solid State Ionics, 1999, vol. 125, p. 1.
- Schober, T., Solid State Ionics, 2003, vols. 162–163, p. 277.
- Ivanov-Shits, A. and Murin, I., Ionika tverdogo tela (Solid State Ionics), St. Petersburg: S.-Peterb. Univ., 2010, vol. 2.
- Malavasi, L., Fisher, C.A., and Islam, M.S., Chem. Soc. Rev., 2010, vol. 39, p. 4370.
- Tanaka, M., Katahira, K., Asakura, Y., Uda, T., Iwahara, H., and Yamamoto, I., J. Nucl. Sci. Technol., 2004, vol. 41, p. 61.
- Shi, Ch., Yoshino, M., and Morinaga, M., Solid State Ionics, 2005, vol. 176, p. 1091.
- Kurita, N., Xiong, Yue-P., Imai, Y., and Fukatsu, N., Ionics, 2010, vol. 16, p. 787.
- Suzuki, A., Muroga, T., Yoneoka, T., and Tanaka, S., J. Phys. Chem. Solids, 2005, vol. 66, p. 690.
- Kondo, M., Muroga, T., Katahira, K., and Oshima, T., J. Power Energy Syst., 2008, vol. 2, p. 590.
- Kurita, N., Fukatsu, N., Ito, K., and Ohashi, T., J. Electrochem. Soc., 1995, vol. 142, p. 1552.
- Gorelov, V.P., Vykhodetz, V.B., Kurennykh, T.E., Balakireva, V.B., Kuz’min, A.N., and Anan’ev, M.V., Russ. J. Electrochem., 2013, vol. 49, p. 915.
- Gorelov, V.P., Balakireva, V.B., Kuz’min, A.V., and Plaksin, S.V., Neorg. Mater., 2014, vol. 50, p. 535.
- Gorelov, V.P., Balakireva, V.B., and Kuz’min, A.V., Fiz. Tverd. Tela, 2016, vol. 58, p. 14.
- Gorelov, V.P. and Balakireva, V.B., Izv. Akad. Nauk SSSR, Neorg. Mater., 1990, vol. 26, p. 102.
- Anan’ev, M.V., Bershitskaya, N.M., Plaksin, S.V., and Kurumchin, E.H., Russ. J. Electrochem., 2012, vol. 48, p. 879.
- Gorelov, V.P., Sharova, N.V., and Sokolova, Yu.V., Russ. J. Electrochem., 1997, vol. 33, p. 1351.
- Arestova, N.V. and Gorelov, V.P., Elektrokhimiya, 1994, vol. 30, p. 988.
- Fadeev, G.I., Volkov, A.N., Kalyakin, A.S., Demin, A.K., Gorelov, V.P., Neuimin, A.D., and Balakireva, V.B., RF Patent 2483298, 2013.
- Demin, A.K., Volkov, A.N., Kalyakin, A.S., Fadeev, G.I., Gorelov, V.P., and Kuz’min, A.V., RF Patent 2483300, 2013.
- Volkov, A.N., Kalyakin, A.S., Fadeev, G.I., Demin, A.K., and Gorelov, V.P., RF Patent 2490623, 2013.
- Bao, J., Ohno, H., Kurita, N., Okuyama, Y., and Fukatsu, N., Electrochim. Acta, 2011, vol. 56, p. 1062.
- Kreuer, K.D., Ann. Rev. Mater. Res., 2003, vol. 33, p. 333.
- Islam, M.S., Davies, R.A., and Gale, J.D., Chem. Mater., 2001, vol. 13, p. 2049.
- Løken, A., Kjølseth, Ch., and Haugsrud, R., J. Alloys Compd., 2014, vol. 267, p. 61.
- Balakireva, V.B., Kuz’min, A.V., and Gorelov, V.P., Russ. J. Electrochem., 2010, vol. 46, p. 749.