Quinone based conducting redox polymers for electrical energy storage

R. Emanuelsson R. Emanuelsson , C. Karlsson C. Karlsson , H. Huang H. Huang , C. Kosgei C. Kosgei , M. Strømme M. Strømme , M. Sjödin M. Sjödin
Российский электрохимический журнал
Abstract / Full Text

Conducting redox polymers (CRPs) constitute a promising class of materials for the development of organic matter based batteries with the potential to overcome the main limitations connected to this type of rechargeable battery systems including low conductivity and dissolution problems. In this report we show that the potential of quinones can be effectively tuned into the conducting region of polypyrrole (PPy), both in water based solutions and in acetonitrile, which is a prerequisite for profitable combination of the two units. We also present a device where both anode and cathode are made from PPy substituted with different quinone pendant groups and where good rate performance is achieved without any conductivity additives thus providing support for the hypothesized synergetic effect of a conducting polymer backbone and a covalently attached redox active pendant group. This device constitutes, to the best of our knowledge, the first all-CRP based battery reported to date.

Author information
  • Nanotechnology and Functional Materials, Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, Box 534, SE-751 21, Uppsala, Sweden

    R. Emanuelsson, C. Karlsson, H. Huang, C. Kosgei, M. Strømme & M. Sjödin

  1. Poizot, P. and Dolhem, F., En. Environ. Sci., 2011, vol. 4, p. 2003.
  2. Armand, M. and Tarascon, J.-M., Nature, 2008, vol. 451, p. 652.
  3. Armand, M., Grugeon, S., Vezin, H., Laruelle, S., Ribière, P., Poizot, P., and Tarascon, J.-M., Nat. Mater., 2009, vol. 8, p. 120.
  4. Huskinson, B., Marshak, M.P., Suh, C., Er, S., Gerhardt, M.R., Galvin, C.J., Chen, X., Aspuru-Guzik, A., Gordon, R.G., and Aziz, M.J., Nature, 2014, vol. 505, p. 195.
  5. Milczarek, G. and Inganäs, O., Science, 2012, vol. 335, p. 1468.
  6. Renault, S., Brandell, D., and Edström, K., Chem. Sus. Chem., 2014, vol. 7, p. 2859.
  7. Suga, T., Ohshiro, H., Sugita, S., Oyaizu, K., and Nishide, H., Adv. Mater., 2009, vol. 21, p. 1627.
  8. Chen, H., Armand, M., Demailly, G., Dolhem, F., Poizot, P., and Tarascon, J.-M., Chem. Sus. Chem., 2008, vol. 1, p. 348.
  9. Arias-Pardilla, J., Otero, T.F., Blanco, R., and Segura, J.L., Electrochim. Acta, 2010, vol. 55, p. 1535.
  10. Casado, N., Hernández, G., Veloso, A., Devaraj, S., Mecerreyes, D., and Armand, M., ACS Macro Lett., 2016, vol. 5, p. 59.
  11. Liang, Y., Chen, Z., Jing, Y., Rong, Y., Facchetti, A., and Yao, Y., J. Am. Chem. Soc., 2015, vol. 137, p. 4956
  12. Otero, T.F., Arias-Pardilla, J., Herrera, H., and Segura, J.L., and Seoane, C., PCCP, 2011, vol. 13, p. 16513.
  13. Aydın, M., Esat, B., Kılıç, Ç., Köse, M.E., Ata, A., and Yılmaz, F., Eur. Polym. J., 2011, vol. 47, p. 2283.
  14. Su, C., Yang, F., Xu, L., Zhu, X., He, H., and Zhang, C., Chem. Plus. Chem., 2015, vol. 80, p. 606.
  15. Conte, S., Rodriguez-Calero, G.G., Burkhardt, S.E., Lowe, M.A., and Abruna, H.D., RSC Adv., 2013, vol. 3, p. 1957.
  16. Rosciano, F., Salamone, M.M., Ruffo, R., Sassi, M., and Beverina, L., J. Electrochem. Soc., 2013, vol. 160, p. A1094.
  17. Oyaizu, K., Tatsuhira, H., and Nishide, H., Polym. J., 2015, vol. 47, p. 212.
  18. Chen, H., Armand, M., Courty, M., Jiang, M., Grey, C.P., Dolhem, F., Tarascon, J.-M., and Poizot, P., J. Am. Chem. Soc., 2009, vol. 131, p. 8984.
  19. Zotti, G., Synth. Met., 1998, vol. 97, p. 267.
  20. Ahonen, H.J., Lukkari, J., and Kankare, J., Macromolecules, 2000, vol. 33, p. 6787.
  21. Yang, L., Huang, X., Gogoll, A., Strømme, M., and Sjödin, M., J. Phys. Chem. C, 2015, vol. 119, p. 18956.
  22. Sezer, E., Skompska, M., and Heınze, J., Electrochim. Acta, 2008, vol. 53, p. 4958.
  23. Paul, E.W., Ricco, A.J., and Wrighton, M.S., J. Phys. Chem., 1985, vol. 89, p. 1441.
  24. Ofer, D., Crooks, R.M., and Wrighton, M.S., J. Am. Chem. Soc., 1990, vol. 112, p. 7869.
  25. Liang, Y., Tao, Z., and Chen, J., Adv. Energy Mater., 2012, vol. 2, p. 742.
  26. Trasatti, S. and Petrii, O.A., J. Electroanal. Chem., 1992, vol. 327, p. 353.
  27. Haynes, W.M., Lide, D.R., and Bruno, T.J., CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data, Press, C.R.C., 2013.
  28. Kittlesen, G.P., White, H.S., and Wrighton, M.S., J. Am. Chem. Soc., 1984, vol. 106, p. 7389.
  29. Shu, C.F. and Wrighton, M.S., J. Phys. Chem., 1988, vol. 92, p. 5221.
  30. Thackeray, J.W., White, H.S., and Wrighton, M.S., J. Phys. Chem., 1985, vol. 89, p. 5133.
  31. Karlsson, C., Huang, H., Strømme, M., Gogoll, A., and Sjödin, M., Electrochim. Acta, 2015, vol. 179, p. 336.
  32. Gan, X., Jiang, W., Wang, W., and Hu, L., Org. Lett., 2009, vol. 11, p. 589.
  33. Viault, G., Grée, D., Das, S., Yadav, J.S., and Grée, R., Eur. J. Org. Chem., 2011, vol. 2011, p. 1233.
  34. Karlsson, C., Huang, H., Strømme, M., Gogoll, A., and Sjödin, M., RSC Adv., 2015, vol. 5, p. 11309.
  35. Yao, M., Senoh, H., Araki, M., Sakai, T., and Yasuda, K., ECS Trans., 2010, vol. 28, p. 3.
  36. Senoh, H., Yao, M., Sakaebe, H., Yasuda, K., and Siroma, Z., Electrochim. Acta, 2011, vol. 56, p. 10145.
  37. Trefz, T., Kabir, M.K., Jain, R., Patrick, B.O., and Hicks, R.G., Can. J. Chem., 2014, vol. 92, p. 1010.
  38. Finklea, H.O., Encyclopedia of Analytical Chemistry, John Wiley & Sons, Ltd., 2006.
  39. Haddox, R.M. and Finklea, H.O., J. Phys. Chem. B, 2004, vol. 108, p. 1694.
  40. Marsella, M.J., Newland, R.J., Carroll, P.J., and Swager, T.M., J. Am. Chem. Soc., 1995, vol. 117, p. 9842.
  41. Sheberla, D., Patra, S., Wijsboom, Y.H., Sharma, S., Sheynin, Y., Haj-Yahia, A.-E., Barak, A.H., Gidron, O., and Bendikov, M., Chem. Sci., 2015, vol. 6, p. 360.
  42. Karlsson, C., Huang, H., Strømme, M., Gogoll, A., and Sjödin, M., J. Phys. Chem. C, 2013, vol. 117, p. 23558.
  43. Karlsson, C., Huang, H., Strømme, M., Gogoll, A., and Sjödin, M., J. Electroanal. Chem., 2014, vol. 735, p. 95.
  44. Karlsson, C., Gogoll, A., Strømme, M., and Sjödin, M., J. Phys. Chem. C, 2013, vol. 117, p. 894.