Examples



mdbootstrap.com



 
Статья
2021

First-Principles Design and Preparation of Ag3PO4 Materials and Their Photocatalytic Properties


Chao PengChao Peng, Yunfeng LiuYunfeng Liu, Junhao CuiJunhao Cui, Kun LuoKun Luo, Yi ShenYi Shen, Xiaohui LiXiaohui Li
Российский журнал физической химии А
https://doi.org/10.1134/S0036024421130173
Abstract / Full Text

The charge density, differential charge density, band structure, density of states and absorption spectra of cubic structure Ag3PO4 were calculated by Material Studio software. The best function for calculating the Ag3PO4 crystal model is PBE0 with a lattice constant of 6.004 Å. In Ag3PO4 crystal system, the force between O–Ag is weaker than that between O–P, which leads to the photo-corrosion of Ag3PO4 material. The forbidden band width of the Ag3PO4 crystal is 2.47 eV. The light absorption boundary is approximately 520 nm. At the same time, the cubic phase Ag3PO4 was successfully prepared. The light absorption boundary value of the Ag3PO4 sample measured by UV–Vis diffuse reflectance spectroscopy is about 520 nm, and the forbidden band width is 2.41 eV. The results obtained by means of photoluminescence spectroscopy, UV–Vis diffuse reflectance absorption spectroscopy and degradation of organic pollutants are consistent with theoretical calculations. calculations.

Author information
  • Key Laboratory of Environment Functional Materials of Tangshan City, Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, Industry Institute of Advanced Materials and College of Materials Science and Engineering, North China University of Science and Technology, 063210, Tangshan, Hebei, ChinaChao Peng, Yunfeng Liu, Junhao Cui, Yi Shen & Xiaohui Li
  • Center for High Pressure Science (CHIPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 066004, Qinhuangdao, ChinaKun Luo
References
  1. X. Chen, S. Shen, L. Guo, and S. S. Mao, Chem. Rev. 110, 6503 (2010).
  2. K. Woan, G. Pyrgiotakis, and W. Sigmund, Adv. Mater. 21, 2233 (2009).
  3. S. Sakthivel, B. Neppolian, M. V. Shankar, B. Arabindoo, M. Palanichamy, and V. Murugesan, Sol. Energy Mater. Sol. Cells 77, 65 (2003).
  4. A. Wold, Chem. Mater. 5, 280 (1993).
  5. S. K. Zheng, T. M. Wang, and C. Wang, J. Mater. Sci. Lett. 21, 1721 (2002).
  6. H. G. Kim, P. H. Borse, W. Choi, and J. S. Lee, Angew. Chem., Int. Ed. 44, 4585 (2005).
  7. J. Wang, D. N. Tafen, J. P. Lewis, Z. Hong, A. Manivannan, M. Zhi, et al., J. Am. Chem. Soc. 131, 12290 (2009).
  8. A. di Paola, E. García-López, G. Marci, and L. Palmisano, J. Hazard. Mater. 211, 3 (2012).
  9. K. Striegler, Modified Graphitic Carbon Nitrides for Photocatalytic Hydrogen Evolution from Water: Copolymers, Sensitizers, and Nanoparticles (Springer, New York, 2015).
  10. Y. Yoshida, M. Matsuoka, S. C. Moon, H. Mametsuka, E. Suzuki, and M. Anpo, Res. Chem. Intermed. 26, 567 (2000).
  11. T. An, H. Zhao, and P. K. Wong, Advances in Photocatalytic Disinfection (Springer, Berlin, 2017).
  12. K. L. Zhang, C. M. Liu, F. Q. Huang, C. Zheng, and W. D. Wang, Appl. Catal. B: Environ. 68, 125 (2006).
  13. J. Lin, C. Y. Jimmy, D. Lo, and S. K. Lam, J. Catal. 183, 368 (1999).
  14. C. C. Wang, J. R. Li, X. L. Lv, Y. Q. Zhang, and G. Guo, Energy Environ. Sci. 7, 2831 (2014).
  15. H. Irie, Y. Watanabe, and K. Hashimoto, J. Phys. Chem. B 107, 5483 (2003).
  16. Q. Wan, T. H. Wang, and J. C. Zhao, Appl. Phys. Lett. 87, 083105 (2005).
  17. Von G. U. Oertzen, R. T. Jones, and A. R. Gerson, Phys. Chem. Miner. 32, 255 (2005).
  18. M. Acı and M. Avcı, Appl. Phys. A 122, 631 (2016).
  19. X. Jia, H. Q. Zhang, Z. Wang, C. L. Jiang, Q. J. Liu, and Z. T. Liu, Moscow Univ. Phys. Bull. 72, 358 (2017).
  20. I. O. Alp and Y. O. Ciftci, J. Electron. Mater. 47, 272 (2018).
  21. R. de Alencar Rocha, W. F. da Cunha, and L. A. Ribeiro, J. Mol. Model. 25 (9), 290 (2019).
  22. S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. Probert, K. Refson, and M. C. Payne, Zeitschr. Kristallogr.−Cryst. Mater. 220, 567 (2005).
  23. M. D. Segall, P. J. Lindan, M. A. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, J. Phys.: Condens. Matter 14, 2717 (2002).
  24. A. Yoshinari, K. Ishida, K. I. Murai, and T. Moriga, Mater. Res. Bull. 44, 432 (2009).
  25. L. Lezhong, Y. Weiqing, D. Yingchun, and Z. Xinghua, J. Semicond. 33, 012002 (2012).
  26. M. K. Yaakob, N. H. Hussin, M. F. M. Taib, T. I. T. Kudin, O. H. Hassan, A. M. M. Ali, and M. Z. A. Yahya, Integr. Ferroelectr. 155, 15 (2014).
  27. Y. Deng, O. H. Jia, X. R. Chen, and J. Zhu, Phys. B (Amsterdam, Neth.) 392, 229 (2007).
  28. Y. Liu, L. Fang, H. Lu, Y. Li, C. Hu, and H. Yu, Appl. Catal. B: Environ. 115, 245 (2012).
  29. Y. Liu, L. Fang, H. Lu, L. Liu, H. Wang, and C. Hu, Catal. Commun. 17, 200 (2012).
  30. W. Teng, X. Li, Q. Zhao, J. Zhao, and D. Zhang, Appl. Catal. B: Environ. 125, 538 (2012).
  31. X. Hong, X. Wu, Q. Zhang, M. Xiao, G. Yang, M. Qiu, and G. Han, Appl. Surf. Sci. 258, 4801 (2012).
  32. Y. Bi, S. Ouyang, N. Umezawa, J. Cao, and J. Ye, J. Am. Chem. Soc. 133, 6490 (2011).
  33. G. Botelho, J. C. Sczancoski, J. Andres, L. Gracia, and E. Longo, J. Phys. Chem. C 119, 6293 (2015).
  34. X. Guan and L. Guo, ACS Catal. 4, 3020 (2014).
  35. F. J. Zhang, F. Z. Xie, S. F. Zhu, J. Liu, J. Zhang, S. F. Mei, and W. Zhao, Chem. Eng. J. 228, 435 (2013).
  36. Y. Lv, K. Huang, W. Zhang, B. Yang, F. Chi, S. Ran, and X. Liu, Ceram. Int. 40, 8087 (2014).
  37. P. Reunchan and N. Umezawa, J. Phys. Chem. C 119, 2284 (2015).
  38. S. Zhang, S. Zhang, and L. Song, Appl. Catal. B: Environ. 152, 129 (2014).