Examples



mdbootstrap.com



 
Статья
2016

An electrochemical DNA sensor for determination of 6-thioguanine using adsorptive stripping voltammetry at HMDE: An anticancer drug DNA interaction study


Elham MirmomtazElham Mirmomtaz, Ali ZirakbashAli Zirakbash, Ali Asghar EnsafiAli Asghar Ensafi
Российский электрохимический журнал
https://doi.org/10.1134/S1023193516040078
Abstract / Full Text

In the present study, the electrochemical behavior of 6-Thioguanine (6-TG) and its interaction with double-strand DNA (ds-DNA) were investigated at the surface of hanging mercury drop electrode (HMDE) in neutral media. The interaction of 6-TG with ds-DNA in neutral buffer was clearly demonstrated by the elimination of 6-TG signal and the advent of a new reduction peak. To investigate the interaction, various parameters including accumulation time and potential as well as ds-DNA concentration were optimized using a combination of adsorptive stripping voltammetry (AdSV) and square wave voltammetry (SWV) techniques. As a consequence a low detection limit of 1.1 μM was obtained in a dynamic range of 16.0 to 360.0 μM. To better understand the interaction mechanism between 6-TG anti-cancer drug and ds-DNA, cyclic voltammetry and UV-Vis spectroscopy measurements were carried out and the intercalation of 6-TG into ds-DNA was proposed as the plausible mechanism. The application of this screening assay in real sample analysis was investigated by using the procedure for determination of 6-TG in 6-Thioguanine tablets and also in spiked 6-TG blood serum. Overall, the results were indicative of a DNA sensor which could be applied effectively in the analysis of 6-TG in vitro.

Author information
  • Department of Science, Islamic Azad University, Shahrekord Branch, Shahrelcord, 88137, IranElham Mirmomtaz
  • Department of Chemistry, Islamic Azad University, Shahreza Branch, Shahreza, 86145, IranAli Zirakbash
  • Department of Chemistry, Isfahan University of Technology, Isfahan, 84156, IranAli Asghar Ensafi
References
  1. Sirajuddin, M., Ali, S., and Badsfhah, A., J. Photoch. Photobio. B, 2013, vol. 124, p. 1.
  2. Kennard, O., Pure Appl. Chem., 1993, vol. 65, no. 6, p. 1213.
  3. Charalc, S., Jangir, D.K., Tyagi, G., and Mehrotra, R., J. Mol. Struct., 2011, vol. 1000, p. 150.
  4. Maleev, V., Semenov, M., and Kruglova, E., J. Mol Struct., 2003, vol. 645, p. 145.
  5. Maa, D.L., Chan, D.S.H., and Lee, P., Biochimie., 2011, vol. 93, p. 1252.
  6. Minunni, M., Tombelli, S., and Mascini, M., Talanta, 2005, vol. 65, p. 578.
  7. Vijayabharathia, R., Sathyadevib, P., and Krishnamoorthyb, P., Spectrochim. Acta A, 2012, vol. 89, p. 294.
  8. Nia, Y., Wang, Y., and Kokot, S., Sensors Actuators B Chem., 2011, vol. 156, p. 290.
  9. Ryvolova, M., Adam, V., and Eckschlager, T., Electrophoresis., 2012, vol. 33, p. 1545.
  10. Motohashi, N., Kamata, K., and Meyer, R., Anticancer Res., 1990, vol. 10, p. 1611.
  11. Kara, H.E.S., Bioelectrochemistry, 2014, vol. 99, p. 17.
  12. Cheng, G., Zhao, J., and Tu, Y., Anal. Chim. Acta, 2005, vol. 533, p. 11.
  13. Wu, J., Zhou, Y, H., and Li, X. L., Sensors & Actuators B, 2005, vol. 104, p. 43.
  14. Pang, D.W. and Abruna, H.D., Anal Chem., 1998, vol. 70, p. 3162.
  15. Spackova, N., Cubero, E., Sponer, J., and Orozco, M., J. Am. Chem. Soc., 2004, vol. 126.
  16. Jacobsena, J.H., Schmiegelowa, K., and Nerstinga, J., J. Chromatoger. B, 2012, vol. 881, p. 115.
  17. Karran, P. and Attard, N., Nat. Rev. Cancer., 2008, vol. 8, p. 24.
  18. Lennard, L., Eur. J. Clin. Pharmacol., 1992, vol. 43, p. 329.
  19. Demoz, A. and Harrison, D.J., Langmuir, 1993, vol. 9, p. 1046.
  20. Turyan, I. and Mandler, D., Anal. Chem., 1994, vol. 66, p. 58.
  21. Muskal, N., Turyan, I., and Mandler, D., J. Am. Chem. Soc., 1995, vol. 117, p. 1147.
  22. Kang, J.F., Liao, S., Jordan, R., and Ulman, A., J. Am. Chem. Soc., 1998, vol. 120, p. 9662.
  23. Kang, J.F., Ulman, A., Liao, S., and Jordan, R., Langmuir, 1999, vol. 15, p. 2095.
  24. Bruunshuus, I. and Schmiegelow, I.K., Scand. J. Clin. Lab. Invest., 1989, vol. 49, p. 779.
  25. Rowland, K., Lennard, L., and Lilleyman, J.S., J. Chromatogr. B, 1998, vol. 705, p. 29.
  26. Mawatari, H., Kato, Y., Nishimura, S., Sakura, N., and Ueda, K., J. Chromatogr. B, 1998, vol. 716, p. 392.
  27. Keuzenkamp-Jansen, C.W., de Abreu, R.A., Bokkerink, J.P., and Trijbels, J.M., J. Chromatogr. B, 1995, vol. 672, p. 53.
  28. Lennard, L. and Singleton, H.J., J. Chromatogr., 1992, vol. 583, p. 83.
  29. Lennard, L., J. Chromatogr., 1987, vol. 423, p. 169.
  30. Lennard, L., J. Chromatogr., 1985, vol. 345, p. 441.
  31. Wang, W., Wang, S., and Xie, F., Sensors and Actuators B, 2006, vol. 120, p. 238.
  32. Tomschik, M., Jelen, F., Havran, L., and Trnkova, L., J. Electroanal. Chem., 1999, vol. 476, p. 71.
  33. Madueno, R., Pineda, T., Sevilla, J.M., and Blazquez, M., J. Electroanal. Chem., 2004, vol. 565, p. 301.
  34. Jelen, F., Tomschik, M., and Palecek, E., J. Electroanal. Chem., 1997, vol. 423, p. 141.
  35. Sypackova, N., Cubero, E., Syponer, J., and Orozco, M., JACS, vol. 126, p. 14642.
  36. Mirmomtaz, E. and Ensafi, A.A., Eletrochimica Acta, 2009, vol. 54, p. 4353.