Статья
2022

Photoelectrodes Based on Cadmium and Zinc Sulfides for the Light Energy Conversion to Electrical Energy: The Role of the Materials’ Chemical Composition and Electrolyte Concentration


D. V. Markovskaya D. V. Markovskaya , E. A. Kozlova E. A. Kozlova
Российский электрохимический журнал
https://doi.org/10.1134/S1023193522070102
Abstract / Full Text

The optimal chemical composition of the Cd0.8Zn0.2S/FTO-based working electrode for photoelectrochemical cell is found. The influence of Na2S, S, and NaCl concentrations on the cell efficiency was studied. Under the optimal conditions, the highest short-circuit current density is 8.25 mA/cm2; the power conversion efficiency, 10.7%.

Author information
  • Federal Research Center Boreskov Institute of Catalysis, Novosibirsk, Russia

    D. V. Markovskaya & E. A. Kozlova

References
  1. Zamani, M., Kordrostami, Z., and Hamedi, S., Efficient inclined core–shell nanowire solar cells, Optik, 2021, vol. 248, p. 167974:1.
  2. Krishna, B.G., Ghosh, D.S., and Tiwari, S., Progress in ambient air-processed perovskite solar cells: Insights into processing techniques and stability assessment, Sol. Energy, 2021, vol. 224, p. 1369.
  3. Santos, F., Hora, C., Bernardo, G., Ivanou, D., and Mendes, A., Efficient monolithic dye sensitized solar cells with eco-friendly silica-titania spacer layers, Sol. Energy, 2019, vol. 183, p. 419.
  4. Berger, T., Monllor-Satoca, D., Jankulovska, M., Lana-Villarreal, T., and Gomez, R., The electrochemistry of nanostructured titanium dioxide electrodes, Chemphyschem, 2012, vol. 13, p. 2824.
  5. Kryukov, A.I., Stroyuk, A.L., Kuchmii, S.Ya., and Pokhodenko, V.D., Nanophotocatalysis (in Russian), Kiev: Akademperiodika, 2013.
  6. Bhojanaa, K.B. and Pandikumar, A., Contribution of interconnection in barium stannate with titania for enhancing photovoltaic performance of dye-sensitized solar cells, Mater. Chem. Phys., 2021, vol. 267, p. 124658:1.
  7. Markovskaya, D.V., Zhurenok, A.V., Cherepanova, S.V., and Kozlova, E.A., Solid solutions of CdS and ZnS: Comparing photocatalytic activity and photocurrent generation, Appl. Surf. Sci. Adv., 2021, vol. 4, p. 100076:1.
  8. Markovskaya, D.V., Gribov, E.N., Kozlova, E.A., Kozlov, D.V., and Parmon, V.N., Modification of sulfide-based photocatalyst with zinc- and nickelcontaining compounds: correlation between photocatalytic activity and photoelectrochemical parameters, Renew. Energy, 2020, vol. 151, p. 286.
  9. Kamaja, C.K., Devarapalli, R.R., Dave, Y., Debgupta, J., and Shelke, M.V., Synthesis of novel Cu2S nanohusks as high-performance counter electrode for CdS/CdSe sensitized solar cell, J. Power Sources, 2016, vol. 315, p. 277.
  10. Lee, Y.L. and Chang, C.H., Efficient polysulphide electrolyte for CdS quantum dot-sensitized solar cells, J. Power Sources, 2008, vol. 185, p. 584.