Examples



mdbootstrap.com



 
Статья
2021

Electrocatalytic oxidation of glucose in a neutral medium on an electrode modified by carboxylated multi-walled carbon nanotubes and by silver and palladium


A. V. OkhokhoninA. V. Okhokhonin, K. O. TokmakovaK. O. Tokmakova, T. S. SvalovaT. S. Svalova, A. I. MaternA. I. Matern, A. N. KozitsinaA. N. Kozitsina
Российский химический вестник
https://doi.org/10.1007/s11172-021-3204-5
Abstract / Full Text

Drop deposition of a carboxylated multi-walled carbon nanotube suspension and layer-by-layer electrochemical deposition of silver and palladium were used to modify thick-film carbon electrodes. The modified electrodes exhibited a pronounced catalytic activity in the electrochemical oxidation of glucose in a neutral medium. The results can be used to develop an enzymefree electrocatalytic sensor for quantitative determination of glucose.

Author information
  • Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 ul. Mira, 620002, Ekaterinburg, Russian FederationA. V. Okhokhonin, K. O. Tokmakova, T. S. Svalova, A. I. Matern & A. N. Kozitsina
References
  1. T. Semashko, A. Lobanok, A. Shtyrov, E. Mikhalenok, A. Bel’skaya, Nauka i Innovatsii [Science and Innovations], 2018, 73 (in Russian).
  2. D. R. P. Steven Schreiner, Joseph D. Bronzino, Medical Instruments and Devices: Principles and Practices, CRC Press, Taylor & Francis Group, Boca Raton, 2016, 310 pp.
  3. A. Okhokhonin, V. Stepanova, N. Malysheva, A. Matern, A. Kozitsina, Electroanalysis, 2021, 33, 111; DOI: https://doi.org/10.1002/elan.202060177.
  4. A. B. Urgunde, A. R. Kumar, K. P. Shejale, R. K. Sharma, R. Gupta, ACS Appl. Nano Mater., 2018, 1, 5571; DOI: https://doi.org/10.1021/acsanm.8b01115.
  5. Y. Ji, J. Liu, X. Liu, M. M. F. Yuen, X. Z. Fu, Y. Yang, R. Sun, C. P. Wong, Electrochim. Acta, 2017, 248, 299; DOI: https://doi.org/10.1016/j.electacta.2017.07.100.
  6. A. N. Kozitsina, S. S. Dedeneva, Z. V. Shalygina, A. V. Okhokhonin, D. L. Chizhov, A. I. Matern, K. Z. Brainina, J. Anal. Chem., 2014, 69, 758; DOI: https://doi.org/10.1134/s1061934814080048.
  7. T. R. Madhura, G. G. Kumar, R. Ramaraj, J. Solid State Electrochem., 2020, 24, 3073; DOI: https://doi.org/10.1007/s10008-020-04763-3.
  8. A. N. Kozitsina, A. V. Okhokhonin, A. I. Matern, J. Electroanal. Chem., 2016, 772, 89; DOI: https://doi.org/10.1016/j.jelechem.2016.04.029.
  9. K. Derina, E. Korotkova, J. Barek, J. Pharm. Biomed. Anal., 2020, 113538; DOI: https://doi.org/10.1016/j.jpba.2020.113538.
  10. C. Zhang, F. Li, S. Huang, M. Li, T. Guo, C. Mo, X. Pang, L. Chen, X. Li, J. Colloid Interface Sci., 2019, 557, 825; DOI: https://doi.org/10.1016/j.jcis.2019.09.076.
  11. B. Kurt Urhan, Ü. Demir, T. Öznülüer Özer, and H. Öztürk Doğan, Thin Solid Films, 2020, 693, 137695; DOI: https://doi.org/10.1016/j.tsf.2019.137695.
  12. M. Liu, Y. Wang, H. Zhang, Z. Jiang, RSC Adv., 2019, 9, 6613; DOI: https://doi.org/10.1039/c8ra09749f.
  13. A. R. Abbasi, M. Yousefshahi, K. Daasbjerg, J. Inorg. Organomet. Polym. Mater., 2020, 30, 2027; DOI: https://doi.org/10.1007/s10904-020-01452-6.
  14. M. Lu, Y. Deng, Y. Li, T. Li, J. Xu, S. W. Chen, J. Wang, Anal. Chim. Acta, 2020, 1110, 35; DOI: https://doi.org/10.1016/j.aca.2020.02.023.
  15. S. Malhotra, Y. Tang, P. K. Varshney, Chem. Pap., 2019, 73, 1987; DOI: https://doi.org/10.1007/s11696-019-00752-7.
  16. Y. Miao, L. Ouyang, S. Zhou, L. Xu, Z. Yang, M. Xiao, R. Ouyang, Biosens. Bioelectron., 2014, 53, 428; DOI: https://doi.org/10.1016/j.bios.2013.10.008.
  17. S. J. Cho, H.-B. Noh, M.-S. Won, C.-H. Cho, K. B. Kim, Y.-B. Shim, Biosens. Bioelectron., 2018, 99, 471; DOI: https://doi.org/10.1016/j.bios.2017.08.022.
  18. A. R. Poerwoprajitno, L. Gloag, S. Cheong, J. J. Gooding, R. D. Tilley, Nanoscale, 2019, 11, 18995; DOI: https://doi.org/10.1039/c9nr05802h.
  19. M. J. S. Farias, J. M. Feliu, Top. Curr. Chem., 2019, 377, 5; DOI: https://doi.org/10.1007/s41061-018-0228-x.
  20. A. V. Okhokhonin, S. Yu. Saraeva, A. I. Matern, A. N. Kozitsina, J. Anal. Chem. (Engl. Transl.) 2017, 72, 354; DOI: https://doi.org/10.7868/s0044450217040132.
  21. M. A. Komkova, E. E. Karyakina, A. A. Karyakin, J. Am. Chem. Soc., 2018, 140, 11302; DOI: https://doi.org/10.1021/jacs.8b05223.
  22. Handbook of Organopalladium Chemistry for Organic Synthesis, Ed. E. Negishi, John Wiley & Sons, Inc., New York, USA, 2002; DOI: https://doi.org/10.1002/0471212466.
  23. X. Liu, J. Iocozzia, Y. Wang, X. Cui, Y. Chen, S. Zhao, Z. Li, Z. Lin, Energy Environ. Sci., 2017, 10, 402; DOI: https://doi.org/10.1039/c6ee02265k.
  24. E. Antolini, Energy Environ. Sci., 2009, 2, 915; DOI: https://doi.org/10.1039/b820837a.
  25. L. Yang, B. Zhang, B. Xu, F. Zhao, B. Zeng, Talanta, 2021, 224, 121845; DOI: https://doi.org/10.1016/j.talanta.2020.121845.
  26. G. Kenne Dedzo, E. Pameté Yambou, M. R. Topet Saheu, G. Ngnie, C. P. Nanseu-Njiki, C. Detellier, E. Ngameni, J. Electroanal. Chem., 2017, 801, 49; DOI: https://doi.org/10.1016/j.jelechem.2017.07.030.
  27. P. B. Deroco, I. G. Melo, L. S. R. Silva, K. I. B. Eguiluz, G. R. Salazar-Banda, O. Fatibello-Filho, Sensors Actuators, B, 2018, 256, 535; DOI: https://doi.org/10.1016/j.snb.2017.10.107.
  28. K. Samoson, P. Thavarungkul, P. Kanatharana, W. Limbut, J. Electrochem. Soc., 2019, 166, B1079; DOI: https://doi.org/10.1149/2.1381912jes.
  29. A. Cid, J. Simal-Gandara, J. Inorg. Organomet. Polym. Mater., 2020, 30, 1011; DOI: https://doi.org/10.1007/s10904-019-01331-9.
  30. N. R. Elezovic, P. Zabinski, M. N. Krstajic Pajic, T. Tokarski, B. M. Jovic, V. D. Jovic, J. Serbian Chem. Soc., 2018, 83, 593; DOI: https://doi.org/10.2298/JSC171103011E.
  31. B. I. Podlovchenko, Y. M. Maksimov, A. G. Utkin, Russ. J. Electrochem., 2015, 51, 891; DOI: https://doi.org/10.1134/S1023193515100110.
  32. J. Sun, Y. Li, Y. Liu, W. Zhou, X. Zhen, M. F. Lang, Int. J. Hydrogen Energy, 2019, 44, 5990; DOI: https://doi.org/10.1016/j.ijhydene.2019.01.138.
  33. R. R. Fazleeva, G. R. Nasretdinova, Yu. N. Osin, A. Yu. Ziganshina, V. V Yanilkin, Russ. Chem. Bull., 2020, 69, 241; DOI: https://doi.org/10.1007/s11172-020-2752-4.
  34. C. Li, Y. Xu, H. Yu, K. Deng, S. Liu, Z. Wang, X. Li, L. Wang, H. Wang, Nanotechnology, 2020, 31, 045401; DOI: https://doi.org/10.1088/1361-6528/ab49ae.
  35. M. A. Pozdniakov, I. V. Zhuk, M. V. Lyapunova, A. S. Salikov, V. V. Botvin, A. G. Filimoshkin, Russ. Chem. Bull., 2019, 68, 472; DOI: https://doi.org/10.1007/s11172-019-2442-2.
  36. J. D. Lović, N. R. Elezović, B. M. Jović, P. Zabinski, L. Gajić-Krstajić, V. D. Jović, Int. J. Hydrogen Energy, 2018, 43, 18498; DOI: https://doi.org/10.1016/j.ijhydene.2018.08.056.
  37. N. Abbasi, P. Shahbazi, A. Kiani, J. Mater. Chem. A, 2013, 1, 9966; DOI: https://doi.org/10.1039/c3ta10706j.
  38. Q. Wang, J. Zheng, H. Zhang, J. Electroanal. Chem., 2012, 674, 1; DOI: https://doi.org/10.1016/j.jelechem.2012.02.009.
  39. M. Vega-Cartagena, E. M. Flores-Vélez, G. S. Colón-Quintana, D. A. Blasini Pérez, M. A. De Jesús, C. R. Cabrera, ACS Appl. Energy Mater., 2019, 2, 4664; DOI: https://doi.org/10.1021/acsaem.9b00038.
  40. N. Shishegari, A. Sabahi, F. Manteghi, A. Ghaffarinejad, Z. Tehrani, J. Electroanal. Chem., 2020, 871, 114285; DOI: https://doi.org/10.1016/j.jelechem.2020.114285.
  41. M. Waqas, J. Lan, X. Zhang, Y. Fan, P. Zhang, C. Liu, Z. Jiang, X. Wang, J. Zeng, W. Chen, Electroanalysis, 2020, 32, 1226; DOI: https://doi.org/10.1002/elan.201900705.
  42. L. Meng, J. Jin, G. Yang, T. Lu, H. Zhang, C. Cai, Anal. Chem., 2009, 81, 7271; DOI: https://doi.org/10.1021/ac901005p.