Examples



mdbootstrap.com



 
Статья
2021

Stationary Phases for Capillary Gas Chromatography Obtained on the Basis of Hypercrosslinked Polystyrenes


V. E. ShiryaevaV. E. Shiryaeva, T. P. PopovaT. P. Popova, A. A. KorolevaA. A. Koroleva, A. Yu. Kanat’evaA. Yu. Kanat’eva, A. A. KurganovA. A. Kurganov
Российский журнал физической химии А
https://doi.org/10.1134/S0036024421040233
Abstract / Full Text

Capillary columns with previously or in situ synthesized super-crosslinked polystyrene phases are prepared. It has been shown that columns with stationary phases based on presynthesized hypercrosslinked polystyrenes, spherical monodisperse particles, or “nano-sponges,” despite their microporous structure, show insufficient kinetic efficiency and selectivity in the separation of light hydrocarbons. Higher kinetic efficiency was observed in columns where the hypercrosslinked polystyrene phase was synthesized directly in the column, although the porosity structure of this phase remains unknown. All columns with hypercrosslinked polystyrene stationary phase have good thermal stability, with no observed chemical destruction and physical aging at temperatures up to 250°C.

Author information
  • Topchiev Institute of Perochemical Synthesis, Moscow, RussiaV. E. Shiryaeva, T. P. Popova, A. A. Koroleva, A. Yu. Kanat’eva & A. A. Kurganov
References
  1. K. I. Sakodynskii and L. I. Panina, Polymeric Sorbents for Molecular Chromatography (Nauka, Moscow, 1977) [in Russian].
  2. H. Rotzsche, Stationary Phases in Gas Chromatography, Vol. 48 of J. Chromatogr. Library (Elsevier, Amsterdam, The Netherlands, 1991).
  3. L. G. Bloomberg, LC GC Europe 14, 106 (2001).
  4. A. Korolev, V. Shyrayeva, T. Popova, et al., J. Chromatogr., A 1460, 147 (2016).
  5. M. S. Silverstein, N. R. Cameron, and M. A. Hillmyer, Porous Polymers (Wiley, Hoboken, 2011).
  6. Y. V. Patrushev and V. N. Sidelnikov, J. Chromatogr., A 1351, 103 (2014).
  7. C. Shende, A. Kabir, E. Townsend, and A. Malik, Anal. Chem. 75, 351 (2003).
  8. D. Lefebvre, R. S.-El. Rayes, V. Jousseaume, et al., J. Chromatogr., A 1413, 85 (2015).
  9. G. Yue, Q. Luo, J. Zhang, et al., Anal. Chem. 79, 938 (2007).
  10. V. G. Berezkin, A. A. Korolev, and V. S. Khotimskii, Dokl. Phys. Chem. 370, 1 (2000).
  11. V. G. Berezkin, T. P. Popova, and V. E. Shirayeva, Russ. Chem. Bull 50, 233 (2001).
  12. Yu. Yampolskii, L. Starannikova, N. Belov, et al., J. Membr. Sci. 453, 532 (2014).
  13. P. P. Chapala, M. V. Bermeshev, and N. N. Gavrilova, Polym. Sci., Ser. A 59, 143 (2017).
  14. V. Belotserkovskaya and E. Yakovleva, J. Chromatogr., A 1298, 109 (2013).
  15. V. E. Shiryaeva, T. P. Popova, A. A. Korolev, et al., Russ. J. Phys. Chem. A 93, 151 (2019).
  16. S. D. Kelman, B. W. Rowe, C. W. Bielawski, et al., J. Membr. Sci. 320, 123 (2008).
  17. S. D. Bazhenov, I. L. Borisov, D. S. Bakhtin, et al., Green Energy Environ. 1, 235 (2016).
  18. V. A. Davankov and M. P. Tsyurupa, Hypercrosslinked Polymeric Networks and Adsorbing Materials, Synthesis, Structure, Properties, and Application (Elsevier, Amsterdam, 2010).
  19. B. R. Saifutdinov, V. A. Davankov, G. A. Petukhova, et al., Dokl. Phys. Chem. 462, 135 (2015).
  20. V. A. Davankov, G. I. Timofeeva, M. M. Ilyin, and M. P. Tsurupa, J. Polym. Sci. A 35, 3847 (1997).
  21. I. Halasz and C. Horvath, Anal. Chem. 35, 499 (1963).
  22. V. Golovnya and E. A. Mistryukov, J. High Resol. Chromatogr. 2, 609 (1979).
  23. V. E. Shiryaeva, T. P. Popova, A. A. Korolev, A. Yu. Kanat’eva, and A. A. Kurganov, Russ. J. Phys. Chem. A 94, 1930 (2020).
  24. V. E. Shiryaeva, A. A. Korolev, T. P. Popova, et al., J. Chromatogr. Sci., 1 (2019).
  25. V. E. Shiryaeva, T. P. Popova, A. Yu. Kant’eva, et al., Russ. J. Phys. Chem. A 93, 946 (2019).
  26. L. D. Belyakova, O. V. Vasilevskaya, M. P. Tsyurupa, and V. A. Davankov, Russ. J. Phys. Chem. A 70, 1374 (1996).
  27. S. Jespers, K. Roeleveld, F. Lynen, et al., J. Chromatogr., A 1386, 81 (2015).
  28. A. Kurganov, A. Kanateva, and E. Yakubenko, J. Sep. Sci. 39, 162 (2016).
  29. M. Lee, C. G. Bezzu, M. Carta, et al., Macromolecules 49, 4147 (2016).
  30. V. E. Shiryaeva, T. P. Popova, A. Yu. Kant’eva, et al., Russ. J. Phys. Chem. A 93, 946 (2019).
  31. E. Yakubenko, A. Korolev, P. Chapala, et al., Anal. Chim. Acta 986, 153 (2017).
  32. L. D. Belyakova, O. V. Vasilevskaya, M. P. Tsyurupa, and V. A. Davankov, Zh. Fiz. Khim. 69, 696 (1995).