Square Wave Anodic Stripping Voltammetric Determination of Paracetamol at Poly Luminol/Functionalized Multi-Walled Carbon Nanotubes Modified Glassy Carbon Electrode

 Mohammad Bagher Gholivand Mohammad Bagher Gholivand ,  Elahe Ahmadi Elahe Ahmadi
Российский электрохимический журнал
Abstract / Full Text

In the present study an electrochemical sensor, based on glassy carbon electrode (GCE) modified by polyluminol (PLum)/functionalized multi-walled carbon nanotube (f-MWCNTs) was introduced for the determination of paracetamol. Modified electrode was made by casting the f-MWCNTs on GCE and electropolymerization of luminol on its surface. The surface morphology was investigated by scanning electron microscopy (SEM) and impedance electrochemical spectroscopy (EIS). The effective parameters on the response of the modified electrode were optimized, and the square wave anodic stripping voltammetry (SWASV) was applied for drug determination. Under the optimized conditions, at least two linear dynamic ranges (0.04–32.2 and 32.2–172.2 µM) were observed between the anodic peak currents and concentrations of PCM when PLum/f-MWCNTs/GCE was used, and its detection limit was 25 nM. The proposed electrode was successfully applied to determine PCM in pharmaceutical formulations, urine and serum samples.

Author information
  • Department of Analytical Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran

    Mohammad Bagher Gholivand &  Elahe Ahmadi

  1. Wade, M.A., The Extra Pharmacopoeia, London: Pharm. Press, 1979.
  2. Aghababian, R., Essentials of Emergency Medicine, Massachusetts: Jones & Bartlett Publ., 2010.
  3. Carvalho, R.M., Freire, R.S., and Rath, S., Effects of EDTA on signal stability during electrochemical detection of acetaminophen, J. Pharm. Biomed. Anal., 2004, vol. 34, p. 871.
  4. Nikles, C.J., Yelland, M., and Del Mar, C., The role of paracetamol in chronic pain: an evidence-based approach, Am. J. Ther., 2005, vol. 12, p. 80.
  5. Clayton, B.D. and Stock, Y.N., Basic Pharmacology for Nurses, St. Louis: Mosby Inc., A Harcourt Health Sci. Co., 2001.
  6. Trounce, J.R. and Gould, D., Clinical Pharmacology for Nurses, London: Churchill Livingstone, 1997.
  7. Filik, H., Aksu, D., and Apak, R., An optical fibre reflectance sensor for p-aminophenol determination based on tetrahydroxycalix [4] arene as sensing reagent, Sens. Actuat. B: Chem., 2009, vol. 136, p. 105.
  8. Moreira, A.B., Oliveira, H.P., and Atvars, T.D., Direct determination of paracetamol in powdered pharmaceutical samples by fluorescence spectroscopy, Anal. Chim. Acta, 2005, vol. 539, p. 257.
  9. Nebot, C., Gibb, S.W., and Boyd, K.G., Quantification of human pharmaceuticals in water samples by high performance liquid chromatography—tandem mass spectrometry, Anal. Chim. Acta, 2007, vol. 598, p. 87.
  10. Srivastava, M.K., Ahmad, S., and Singh, D., Titrimetric determination of dipyrone and paracetamol with potassium hexacyanoferrate (III) in an acidic medium, Analyst, 1985, vol. 110, p. 735.
  11. Pérez-Ruiz, T., Martínez-Lozano, C., and Tomás, V., Migration behaviour and separation of acetaminophen and p-aminophenol in capillary zone electrophoresis: analysis of drugs based on acetaminophen, J. Pharm. Biomed. Anal., 2005, vol. 38, p. 87.
  12. Ruengsitagoon, W., Liawruangrath, S., and Townshend, A., Flow injection chemiluminescence determination of paracetamol, Talanta, 2006, vol. 69, p. 976.
  13. Miner, D.J., Rice, J.R., and Riggin, R.M., Voltammetry of acetaminophen and its metabolites, Anal. Chem., 1981, vol. 53, p. 2258.
  14. Zen, J.-M. and Ting, Y.-S., Simultaneous determination of caffeine and acetaminophen in drug formulations by square-wave voltammetry using a chemically modified electrode, Anal. Chim. Acta, 1997, vol. 342, p. 175.
  15. Curulli, A., Valentini, F., and Padeletti, G., Smart (Nano) materials: TiO2 nanostructured films to modify electrodes for assembling of new electrochemical probes, Sens. Actuat. B: Chem., 2005, vol. 111, p. 441.
  16. Gómez-Caballero, A., Goicolea, M.A., and Barrio, R.J., Paracetamol voltammetric microsensors based on electrocopolymerized–molecularly imprinted film modified carbon fiber microelectrodes, Analyst, 2005, vol. 130, p. 1012.
  17. Goyal, R.N., Gupta, V.K., and Oyama, M., Differential pulse voltammetric determination of paracetamol at nanogold modified indium tin oxide electrode, Electrochem. Commun., 2005, vol. 7, p. 803.
  18. Felix, F.S., Brett, C.M., and Angnes, L., Carbon film resistor electrode for amperometric determination of acetaminophen in pharmaceutical formulations, J. Pharm. Biomed. Anal., 2007, vol. 43, p. 1622.
  19. Özcan, L. and Şahin, Y., Determination of paracetamol based on electropolymerized-molecularly imprinted polypyrrole modified pencil graphite electrode, Sens. Actuat. B: Chem., 2007, vol. 127, p. 362.
  20. Wang, S.-F., Xie, F., and Hu, R.-F., Carbon-coated nickel magnetic nanoparticles modified electrodes as a sensor for determination of acetaminophen, Sens. Actuat. B: Chem., 2007, vol. 123, p. 495.
  21. Atta, N.F. and El-Kady, M.F., Poly (3-methylthiophene)/palladium sub-micro-modified sensor electrode. Part II: voltammetric and EIS studies, and analysis of catecholamine neurotransmitters, ascorbic acid and acetaminophen, Talanta, 2009, vol. 79, p. 639.
  22. Atta, N.F., El-Kady, M.F., and Galal, A., Palladium nanoclusters-coated polyfuran as a novel sensor for catecholamine neurotransmitters and paracetamol, Sens. Actuat. B: Chem., 2009, vol. 141, p. 566.
  23. Nematollahi, D., Shayani-Jam, H., and Alimoradi, M., Electrochemical oxidation of acetaminophen in aqueous solutions: kinetic evaluation of hydrolysis, hydroxylation and dimerization processes, Electrochim. Acta, 2009, vol. 54, p. 7407.
  24. Jorio, A., Dresselhaus, G., and Dresselhaus, M.S., Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications, Berlin: Springer Sci. Business Media, 2007.
  25. Wang, J., Carbon-nanotube based electrochemical biosensors: a review, Electroanalysis, 2005, vol. 17, p. 7.
  26. Shen, Q. and Wang, X., Simultaneous determination of adenine, guanine and thymine based on β-cyclodextrin/MWNTs modified electrode, J. Electroanal. Chem., 2009, vol. 632, p. 149.
  27. Knight, A.W., A review of recent trends in analytical applications of electrogenerated chemiluminescence, TrACTrends Anal. Chem., 1999, vol. 18, p. 47.
  28. Richter, M.M., Electrochemiluminescence (ecl), Chem. Rev., 2004, vol. 104, p. 3003.
  29. Chen, S.-M. and Lin, K.-C., The electrocatalytic properties of biological molecules using polymerized luminol film-modified electrodes, J. Electroanal. Chem., 2002, vol. 523, p. 93.
  30. Kumar, S.A., Cheng, H.W., and Chen, S.M., Selective detection of uric acid in the presence of ascorbic acid and dopamine using polymerized luminol film modified glassy carbon electrode, Electroanal.: Int. J. Fundam. Pract. Aspects Electroanal., 2009, vol. 21, p. 2281.
  31. Kumar, S.A., Cheng, H.-W., and Chen, S.-M., Electroanalysis of ascorbic acid (vitamin C) using nano-ZnO/poly (luminol) hybrid film modified electrode, React. Funct. Polym., 2009, vol. 69, p. 364.
  32. Lin, K.-C. and Chen, S.-M., Reversible cyclic voltammetry of the NADH/NAD+ redox system on hybrid poly (luminol)/FAD film modified electrodes, J. Electroanal. Chem., 2006, vol. 589, p. 52.
  33. Sassolas, A., Blum, L.J., and Leca-Bouvier, B.D., New electrochemiluminescent biosensors combining polyluminol and an enzymatic matrix, Anal. Bioanal. Chem., 2009, vol. 394, p. 971.
  34. Zhang, G.-F. and Chen, H.-Y., Studies of polyluminol modified electrode and its application in electrochemiluminescence analysis with flow system, Anal. Chim. Acta, 2000, vol. 419, p. 25.
  35. Ferreira, V., Cascalheira, A., and Abrantes, L., Electrochemical copolymerisation of luminol with aniline: a new route for the preparation of self-doped polyanilines, Electrochim. Acta, 2008, vol. 53, p. 3803.
  36. Chang, Y.-T., Lin, K.-C., and Chen, S.-M., Preparation, characterization and electrocatalytic properties of poly (luminol) and polyoxometalate hybrid film modified electrodes, Electrochim. Acta, 2005, vol. 51, p. 450.
  37. Mass and Charge Transport in Electronically Conductive Polymers, inMolecular Design of Electrode Surfaces, Martin, L.S.V.D.C.R. and Murray, R.W., Eds., New York: Wiley, 1992.
  38. Kumar, S.S., Mathiyarasu, J., and Phani, K.L., Determination of uric acid in the presence of ascorbic acid using poly (3,4-ethylenedioxythiophene)-modified electrodes, Electroanalysis, 2005, vol. 17, p. 2281.
  39. Van Benschoten, J.J., Lewis, J.Y., and Heineman, W.R., Cyclic voltammetry experiment, J. Chem. Educ., 1983, vol. 60, p. 772.
  40. Kumar, S.A., Tang, C.-F., and Chen, S.-M., Electroanalytical determination of acetaminophen using nano-TiO2/polymer coated electrode in the presence of dopamine, Talanta, 2008, vol. 76, p. 997.
  41. Manjunatha, R., Nagaraju, D.H., and Suresh, G.S., Electrochemical detection of acetaminophen on the functionalized MWCNTs modified electrode using layer-by-layer technique, Electrochim. Acta, 2011, vol. 56, p. 6619.
  42. Saciloto, T.R., Cervini, P., and Gomes Cavalheir, E.T., New screen printed electrode based on graphite and polyurethane composite for the determination of acetaminophen, Anal. Lett., 2013, vol. 46, p. 312.
  43. Wang, B., Li, Y. and Qin, X., Electrochemical fabrication of TiO2 nanoparticles/[BMIM] BF4 ionic liquid hybrid film electrode and its application in determination of p-acetaminophen, Mater. Sci. Eng. C, 2012, vol. 32, p. 2280.
  44. Zheng, M., Gao, F., and Wang, Q., Electrocatalytical oxidation and sensitive determination of acetaminophen on glassy carbon electrode modified with graphene-chitosan composite, Mater. Sci. Eng. C, 2013, vol. 33, p. 1514.
  45. Zhu, W. and Huang, H., and Gao, X., Electrochemical behavior and voltammetric determination of acetaminophen based on glassy carbon electrodes modified with poly (4-aminobenzoic acid)/electrochemically reduced graphene oxide composite films, Mater. Sci. Eng. C, 2014, vol. 45, p. 21.
  46. Catt, K., Li, H., and Cui, X.T., Poly (3,4-ethylenedioxythiophene) graphene oxide composite coatings for controlling magnesium implant corrosion, Acta Biomater., 2017, vol. 48, p. 530.
  47. Bahramipur, H. and Jalali, F., Sensitive determination of paracetamol using a graphene-modified carbon-paste electrode, Afr. J. Pharm. Pharmacol., 2012, vol. 6, p. 1298.
  48. Xiong, X.-Q., Huang, K.-J., and Xu, C.-X., Glassy carbon electrode modified with poly (taurine)/TiO2-graphene composite film for determination of acetaminophen and caffeine, Chem. Industry Chem. Eng. Quarterly/CICEQ, 2013, vol. 19, p. 359.
  49. Filik, H., Avan, A.A., and Aydar, S., Determination of acetaminophen in the presence of ascorbic acid using a glassy carbon electrode modified with poly (caffeic acid), Int. J. Electrochem. Sci., 2014, vol. 9, p. 148.
  50. Zalani Sofla, S., Moradi, M., and Mohammadnezhad, S., Design of a novel nano-sensor for determination of acetaminophen, J. Appl. Environ. Biol. Sci., 2014, vol. 4, p. 51.
  51. Xu, C.-X., Huang, K.-J., and Fan, Y., Electrochemical determination of acetaminophen based on TiO2-graphene/poly (methyl red) composite film modified electrode, J. Mol. Liq., 2012, vol. 165, p. 32.
  52. Lu, T.-L. and Tsai, Y.-C., Sensitive electrochemical determination of acetaminophen in pharmaceutical formulations at multiwalled carbon nanotube-alumina-coated silica nanocomposite modified electrode, Sens. Actuat. B: Chem., 2011, vol. 153, p. 439.
  53. Fan, Y., Liu, J.-H., and Lu, H.-T., Electrochemical behavior and voltammetric determination of paracetamol on Nafion/TiO2-graphene modified glassy carbon electrode, Colloids Surf. B: Biointerfaces, 2011, vol. 85, p. 289.
  54. Kang, X., Wang, J., and Wu, H., A graphene-based electrochemical sensor for sensitive detection of paracetamol, Talanta, 2010, vol. 81, p. 754.
  55. Özcan, A. and Şahin, Y., A novel approach for the determination of paracetamol based on the reduction of N-acetyl-p-benzoquinoneimine formed on the electrochemically treated pencil graphite electrode, Anal. Chim. Acta, 2011, vol. 685, p. 9.
  56. Liu, G.-T., Chen, H.-F., and Lin, G.-M., One-step electrodeposition of graphene loaded nickel oxides nanoparticles for acetaminophen detection, Biosens. Bioelectron., 2014, vol. 56, p. 26.
  57. Chen, X., Zhu, J., and Xi, Q., A high performance electrochemical sensor for acetaminophen based on single-walled carbon nanotube-graphene nanosheet hybrid films, Sens. Actuat. B: Chem., 2012, vol. 161, p. 648.
  58. Habibi, B., Jahanbakhshi, M., and Pournaghiazar, M.H., Electrochemical oxidation and nanomolar detection of acetaminophen at a carbon-ceramic electrode modified by carbon nanotubes: a comparison between multi walled and single walled carbon nanotubes, Microchim. Acta, 2011, vol. 172, p. 147.