Статья
2019

Silver(I) Oxide on Silver–Zinc Alloys: Anodic Formation and Properties


M. M. Murtazin M. M. Murtazin , M. Yu. Nesterova M. Yu. Nesterova , S. N. Grushevskaya S. N. Grushevskaya , A. V. Vvedenskii A. V. Vvedenskii
Российский электрохимический журнал
https://doi.org/10.1134/S1023193519070085
Abstract / Full Text

Anodic formation in deoxygenated 0.1 М KOH solution of Ag(I) oxide on Ag–Zn alloys with zinc atomic fraction from 5 to 30 at % and its properties were examined using cyclic voltammetry supplemented by photoelectrochemical measurements. Phase composition of the alloys is confirmed by X-ray diffraction analysis. Surface morphology is studied using scanning electron microscope. Ag(I) oxide anodically formed on silver–zinc alloys is shown possessing n-type conductance, with dominating donor defects. The donor defect concentration in the Ag(I) oxide increases, as the zinc content in the alloy grows, and this leads to a decrease in the maximum photocurrent and to narrowing of the space charge region. With the increasing of the zinc concentration in the alloy, the Ag2O particles’ size decreases and their surface density increases.

Author information
  • Voronezh State University, 394018, Voronezh, Russia

    M. M. Murtazin, M. Yu. Nesterova, S. N. Grushevskaya & A. V. Vvedenskii

References
  1. Skorchelletti, V.V., Theoretical Bases of Metal Corrosion (in Russian), Leningrad: Khimiya, 1973.
  2. Marcus, P., Corrosion Mechanisms in Theory and Practice, New York: Marcel Dekker, 2002.
  3. McCafferty, E., Introduction to Corrosion Science, New York: Springer, 2010.
  4. Kaesche, H., Corrosion of metals, Berlin: Springer-Verlag, 2012.
  5. Tödt, F. and Althof, F.-C., Korrosion und Korrosionsschutz, Berlin: De Gruyter, 1961.
  6. Benard, J., Oxidation de Métaux, Paris: Cautier-Villars, 1962.
  7. Marshakov, I.K., Thermodynamics and Corrosion of Alloys (in Russian), Voronezh: Voronezh. Univ., 1983.
  8. Marshakov, I.K., Vvedenskii, A.V., Kondrashin, V.Yu., and Bokov, G.A., Anodic Dissolution and Selective Corrosion of Alloys (in Russian), Voronezh: Voronezh. Univ., 1988.
  9. Kozaderov, O.A. and Vvedenskii, A.V., Mass transfer and phase formation in anodic selective dissolution of homogeneous alloys (in Russian), Voronezh: Nauchnaya kniga, 2004.
  10. Vvedenskii, A.V. and Kozaderov, O.A., in Linear Voltammetry of Anodic Selective Dissolution of Homogeneous Metallic Alloys in Voltammetry: Theory, Types and Applications, Saito, Y. and Kikuchi, T., Eds, New York: Nova Science, 2014, p. 363.
  11. Liu, H.T., Xia, X., and Guo, Z.P., A novel silver oxide electrode and its charge–discharge performance, J. Appl. Electrochem., 2012, vol. 32, no. 3, p. 275. https://doi.org/10.1023/A:1015541703258
  12. Lopez, T.M., Vilche, J.R., and Arvia, A.J., The electroformation and electroreduction of anodic films formed on silver in 0.1 M sodium hydroxide in the potential range of the Ag/Ag2O couple, J. Electroanal. Chem., 1984, no. 12, p. 207. https://doi.org/10.1016/S0022-0728(84)80165-5
  13. Ambrose, J. and Barradas, R.G., The electrochemical formation of Ag2O in KOH electrolyte, Electrochim. Acta, 1974, vol. 19, no. 11, p. 781. https://doi.org/10.1016/0013-4686(74)80023-X
  14. Assaf, F.H., Abd El-Rehim, S.S., and Zaky, A., Cyclic voltammetric behavior of α brass in alkaline media, Brit. Corr. J., 2001, vol. 36, no. 2, p. 143. https://doi.org/10.1179/000705901101501587
  15. Vvedenskii, A.V., Grushevskaya, S.N., Kudryashov, D.A., and Ganzha, S.V., Thin oxide films on metals and alloys: anodic formation kinetics and photoelectrochemical properties (in Russian), Voronezh: Nauchnaya kniga, 2016.
  16. Hull, M.N., Ellison, J.E., and Toni, J.E., The Anodic Behavior of Zinc Electrodes in Potassium Hydroxide Electrolytes, J. Electrochem. Soc., 1970, vol. 117, no. 2, p. 192. https://doi.org/10.1149/1.2407463
  17. Armstrong, R.D. and Bell, M.F., The active dissolution of zinc in alkaline solution, J. Electronal. Chem., 1974, vol. 55, no. 2, p. 201. https://doi.org/10.1016/S0022-0728(74)80120-8
  18. Aurian-Blajeni, B. and Tomkiewicz, M., Passive Zinc Electrodes: Application of the Effective Medium Theory, J. Electrochem. Soc., 1985, vol. 132, no. 4, p. 869. https://doi.org/10.1149/1.2113975
  19. Xiaoge, G.Z., Corrosion and Electrochemistry of Zinc, New York: Springer, 1996.
  20. Protasova, I.V. and Nedobezhkina, L.A., Features of zinc dissolution during anodic polarization in sodium hydroxide solutions, Kondensirovannye sredy mezhfaznye granitsy (in Russian), 2016, no. 1(18), p. 91.
  21. Andrukhiv, A.I., Bachaev, A.A., Chiyanov, A.A., and Bandurkin, D.V., Influence of zinc intermediate compounds formed during its anodic dissolution on the parameters of electrode processes and properties of zinc solutions, Vestn. Nizhegorod. univer. im N.I. Lobachevskogo (in Russian), 2013, no. 5(1), p. 97.
  22. Mehdi, H.E., Hantehzadeh, M.R., and Valedbagi, Sh., Physical Properties of Silver Oxide Thin Film Prepared by DC Magnetron Sputtering: Effect of Oxygen Partial Pressure During Growth, J. Fusion Energy, 2013, vol. 32, no. 1, p. 28. https://doi.org/10.1007/s10894-012-9509-5
  23. Gao, X.-Y., Wang, S.-Y., Li J., Zheng, Y.-X., Zhang R.-J., Zhou, P., Yang Y.-M., and Chen, L.-Y., Study of structure and optical properties of silver oxide films by ellipsometry, XRD and XPS methods, Thin Solid Films, 2004, vol. 455–456, p. 438. https://doi.org/10.1016/j.tsf.2003.11.242
  24. Barik, U.K., Srinivasan, S., Nagendra, C.L., and Subrahmanyam, A., Electrical and optical properties of reactive DC magnetron sputtered silver oxide thin films: role of oxygen, Thin Solid Films, 2003, vol. 429, p. 129–134. https://doi.org/10.1016/S0040-6090(03)00064-6
  25. Ida, Y., Watase, S., Shinagawa, T., Watanabe, M., Chigane, M., Inaba, M., Nasaka, A. and Izaki, M., Direct electrodeposition of 1.46 eV band gap silver(I) oxide semiconductor films by electrogenerated acid, Chem. Mater., 2008, vol. 20, p. 1254–1256. .https://doi.org/10.1021/cm702865r
  26. Ferretti, A.M., Ponti, A., and Molteni G., Silver(I) oxide nanoparticles as a catalyst in the azide–alkyne cycloaddition, Tetrahedron Lett., 2015, vol. 56, no. 42, p. 5727–5730. https://doi.org/10.1016/j.tetlet.2015.08.083
  27. Wei, J., Lei, Y., Jia, H., Cheng, J., Hou, H., and Zheng, Z., Controlled in situ fabrication of Ag2O/AgO thin films by a dry chemical route at room temperature for hybrid solar cells, Dalton Trans., 2014, vol.43, no. 29, p. 11333–11338. https://doi.org/10.1039/C4DT00827H
  28. Wei, W., Zhao, Q., Dong, J., and Li, J., A novel silver oxides oxygen evolving catalyst for water splitting, Int. J. Hydrogen Energy, 2011, vol. 36, no. 13, p. 7374–7380. https://doi.org/10.1016/j.ijhydene.2011.03.096
  29. Owen, C.C. and SonBinh, T.N., Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbonbased materials, Small, 2010, vol. 6, no. 6, p. 711. https://doi.org/10.1002/smll.200901934
  30. Kazemi, M.S., Fakharian, M., Dabiri, M., and Bazgir, A., Gold nanoparticles decorated reduced graphene oxide sheets with significantly high catalytic activity for ullmann homocoupling, RSC Adv., 2014, vol. 4, no. 10, p. 5243. https://doi.org/10.1039/C3RA45518A
  31. Liu, S., Yan, J., He, G., Zhong, D., Chen, J., Shi, L., Zhou, X., and Jiang H., Layer-by-layer assembled multilayer films of reduced graphene oxide/gold nanoparticles for the electrochemical detection of dopamine, Electroanal. Chem., 2012, vol. 672, p. 40. https://doi.org/10.1016/j.jelechem.2012.03.007
  32. Deng, K-Q., Zhou, J-H., and Li, X-F., Direct electrochemical reduction of graphene oxide and its application to determination of L-tryptophan and L-tyrosine, Colloids Surfaces B: Biointerfaces, 2013, vol. 101, p. 183. https://doi.org/10.1016/j.colsurfb.2012.06.007
  33. Dey, R.S. and Raj, C.R., Development of an amperometric cholesterol biosensor based on graphene-Pt nanoparticle hybrid material, J. Phys. Chem. C, 2010, vol. 114, no. 49, p. 21427. https://doi.org/10.1021/jp105895a
  34. Shahriary, L. and Athawale, A.A., Electrochemical deposition of silver/silver oxide on reduced graphene oxide for glucose sensing, J. Solid State Electrochem., 2015, vol. 19, p. 2255. https://doi.org/10.1007/s10008-015-2865-0
  35. Klingshirn, C.F., Meyer, B.K., Waag, A., Hoffmann, A., and Geurts, J., Zinc Oxide. From Fundamental Properties Towards Novel Applications, Berlin: Springer, 2010.
  36. Istomina, O.V., Evstropiev, S.K., Kolobkova, E.V., and Trofimov, A.O., Photolysis of Diazo Dye in Solutions and Films Containing Zinc and Silver Oxides, Optics Spectroscopy, 2018, vol. 124, no. 6, p. 774. https://doi.org/10.1134/S0030400X18060097
  37. Narang, J., Singhal, C., Mathur, A., Sharma, S., and Pundir, C.S., Portable bioactive paper based genosensor incorporated with Zn-Ag nanoblooms for herpes detection at the point-of-care, Int. J. Biolog. Macromolecules, 2018, vol. 107, p. 2559. https://doi.org/10.1016/j.ijbiomac.2017.10.146
  38. Ding, X, Zhang, Y., Ling, J., and Lin, C., Rapid mussel-inspired synthesis of PDA–Zn–Ag nanofilms on TiO2 nanotubes for optimizing the antibacterial activity and biocompatibility by doping polydopamine with zinc at a higher temperature, Colloids and Surfaces B: Biointerfaces, 2018 (Accepted), https://doi.org/10.1016/j.colsurfb.2018.07.014
  39. Sikora-Jasinska, M., Mostaed, E., Mostaed, A., Beanland, R., Mantovani, D., and Vedani, M., Fabrication, mechanical properties and in vitro degradation behavior of newly developed Zn–Ag alloys for degradable implant applications, Mater. Sci. Eng. C, 2017, vol. 77, p. 1170. https://doi.org/10.1016/j.msec.2017.04.023
  40. Jin, G., Qin, H., Cao, H., Qian, S., Zhao, Y., Peng, X., Zhang, X., Liu, X., and Chu, P.K., Synergistic effects of dual Zn/Ag ion implantation in osteogenic activity and antibacterial ability of titanium, Biomaterials, 2014, vol. 35, no. 27, p. 7699. https://doi.org/10.1016/j.biomaterials.2014.05.074
  41. Bunoiu, I., Mindroiu, M., Manole, C.C., Andrei, M., Nicoara, A., Vasilescu, E., Popa M., and Didilescu A.C., Electrochemical testing of a novel alloy in natural and artificial body fluids, Ann. Anatomy—Anatomischer Anzeiger, 2018, vol. 217, p. 54. https://doi.org/10.1016/j.aanat.2017.12.011
  42. Xiang, Q., Meng, G., Zhang, Y., Xu, J., Xu, P., Pan, Q., and Yu, W., Ag nanoparticle embedded-ZnO nanorods synthesized via a photochemical method and its gas-sensing properties, Sens. Actuators B, 2010, vol. 143, p. 635. https://doi.org/10.1016/j.snb.2009.10.007
  43. Meng, F., Hou, N., Jin, Z., Sun, B., Guo, Z., Kong, L., Xiao, X., Wu, H., Li, M., and Liu J., Ag-decorated ultra-thin porous single-crystalline ZnO nanosheets prepared by sunlight induced solvent reduction and their highly sensitive detection of ethanol, Sens. Actuators B, 2015, vol. 209, p. 975. https://doi.org/10.1016/j.snb.2014.12.078
  44. Ansari, S.A., Khan, M.M., Ansari, M.O., Lee, J., and Cho, M.H., Biogenic synthesis photocatalytic, and photoelectrochemical performance of Ag–ZnO nanocomposite, J. Phys. Chem. C, 2013, vol. 117, p. 27023. https://doi.org/10.1021/jp410063p
  45. Chen, X., Li, Y., Pan, X., Cortie, D., Huang, X., and Yi, Z., Photocatalytic oxidation of methane over silver decorated zinc oxide nanocatalysts, Nat. Commun., 2016, vol. 7, p. 12273. https://doi.org/10.1038/ncomms12273
  46. Lu, Y.H., Xu, M., and Xu, L.X., Enhanced ultraviolet photocatalytic activity of Ag/ZnO nanoparticles synthesized by modified polymer-network gel method, J. Nanopart. Res, 2015, vol. 17, p. 1. https://doi.org/10.1007/s11051-015-3150-y
  47. Shuaishuai M., Jinjuan X.,Yuming Z., and Zewu Z., Photochemical synthesis of ZnO/Ag2O heterostructures with enhanced ultraviolet and visible photocatalytic activity, J. Mater. Chem. A, 2014, vol. 2, no. 20, p. 7272. https://doi.org/10.1039/C4TA00464G
  48. Zhang, Q., Xie, G., Xu, M., Su, Y., Tai, H., Du, H., and Jiang, Y., Visible light-assisted room temperature gas sensing with ZnO–Ag heterostructure nanoparticles, Sens. Actuators B: Chem., 2018, vol. 259, p. 269.
  49. Gurevich, Yu.Ya. and Pleskov, Yu.V., Semiconductor Photoelectrochemistry, New York, Consultants Bureau, 1986.
  50. Bard, A.J., Stratmann, M., and Licht, S., Encyclopedia of Electrochemistry, vol. 6: Semiconductor Electrodes and Photoelectrochemistry, Weinheim: Wiley–VCH, 2002.
  51. Giménez, S. and Bisquert, J., Photoelectrochemical Solar Fuel Production: From Basic Principles to Advanced Devices, Switzerland: Springer International Publishing, 2016.
  52. Massalski, T.B., Binary Alloy Phase Diagrams, vol. 1, Ohio: American Society for Metals, Metals Park, 1986.
  53. Guzmán, D., Rivera, O., Aguilar, C., Ordoñez, S., Martínez, C., Serafini, D., and Rojas, P., Mechanical alloying and subsequent heat treatment of Ag–Zn powders, Trans. Nonferrous Metals Soc. China, vol. 23, no. 7, 2013, p. 2071. https://doi.org/10.1016/S1003-6326(13)62698-9
  54. Pearson, W.B., A Handbook of Lattice Spacings and Structures of Metals and Alloys, London: Pergamon, 1958.
  55. New Handbook of Chemist and Technologist: Electrode Processes. Chemical Kinetics and Diffusion. Colloid Chemistry (in Russian), Simanova, S.A., Ed., St. Petersburg: ANO NPO Professional, 2004.
  56. Chandra-Ambhorn, S. and Chumpanya, P., High temperature oxidation behaviour of Ag–36.35 wt % Zn and Ag–38.50 wt % Zn–0.60 wt % Al, Corr. Sci., 2018 vol. 131, p. 38. https://doi.org/10.1016/j.corsci.2017.11.007
  57. Gerischer, H., Models for the discussion of the photo-electrochemical response of oxide layers on metals, Corr. Sci., 1989, vol. 29, nos. 2–3, p. 257. https://doi.org/10.1016/0010-938X(89)90034-6
  58. Kudryashov, D.A., Grushevskaya, S.N., Ganzha, S.V., and Vvedenskii, A.V., Effect of the crystal face orientation and alloying with gold on the properties of thin anodic films of Ag(I) oxide: I. Photocurrent, Prot. Metals Phys. Chem. Surf., 2009, vol. 45, p. 501. https://doi.org/10.1134/S2070205109050013
  59. Kudryashov, D.A., Grushevskaya, S.N., Olalekan, O., Kukhareva, N.V., and Vvedenskii, A.V., Effect of orientation of crystal face of silver and its alloying with gold on properties of thin anodic Ag(I) oxide films: II. Photopotential, Prot. Metals Phys. Chem. Surf., 2009, vol. 46, p. 32. https://doi.org/10.1134/S2070205110010041
  60. Chatterjee, K., Banerjee, S., and Chakravorty, D., Plasmon resonance shifts in oxide-coated silver nanoparticles, Phys. Rev. B, 2002, vol. 66, no. 8, P. 085421. https://doi.org/10.1103/PhysRevB.66.085421
  61. Jiang, Z.Y., Huang, S.Y., and Qian, B. Semiconductor properties of Ag2O film formed on the silver electrode in 1 M NaOH solution, Electrochim. Acta, 1994, vol. 39, no. 16, p. 2465. https://doi.org/10.1016/0013-4686(94)E0149-I