Статья
2017

Electrophysical properties of bismuth titanates with the pyrochlore structure Bi1.6M x Ti2O7–δ (M = In, Li)


A. G. Krasnov A. G. Krasnov , I. V. Piir I. V. Piir , N. A. Sekushin N. A. Sekushin , Ya. V. Baklanova Ya. V. Baklanova , T. A. Denisova T. A. Denisova
Российский электрохимический журнал
https://doi.org/10.1134/S1023193517080122
Abstract / Full Text

Lithium-containing bismuth titanates with the pyrochlore-type structure Bi1.6LixTi2O7–δ were obtained for the first time. The formation of the pyrochlore phase was confirmed by X-ray diffraction analysis, scanning electron microscopy and local microanalysis. In Bi1.6MxTi2O7–δ, the lithium and indium are occupied the bismuth sites, primarily. The electrophysical properties of doped bismuth titanates were studied by impedance spectroscopy in the frequency range 1–106 Hz. In the low-temperature range (of up to ~400°C), electron conductivity predominates; above 400°C, the oxygen-ion type of conductivity is revealed. In the range p(O2) = 0.21–1 atm, the average value of the sum of ion transport numbers is 0.5 at 500–550°C. The relaxation process was found from the frequency dependences of the dielectric parameters (ε', tan δ, M''), which was of the same type for systems with different dopants (In, Li) probably due to the hopping mechanism of oxygen conductivity.

Author information
  • Institute of Chemistry, Komi Scientific Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, 167982, Russia

    A. G. Krasnov, I. V. Piir & N. A. Sekushin

  • Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620990, Russia

    Ya. V. Baklanova & T. A. Denisova

References
  1. Esquivel-Elizondo, J.R., Hinojosa, B.B., and Nino, J.C., Chem. Mater., 2011, vol. 23, p. 4965.
  2. Kunej, S. and Suvorov, D., J. Am. Ceram. Soc., 2009, vol. 92, p. 959.
  3. Kunej, S., Scapin, S.D., and Suvorov, D., J. Am. Ceram. Soc., 2012.
  4. Yang, X.N., Wang, H.B., Huang, B.B., and Shang, S.X., Mater. Res. Bull., 2005, vol. 40, p. 724.
  5. Jing, X., Huang, B., Yang, H., and Wei, J., Appl. Surf. Sci., 2008, vol. 255, p. 2651.
  6. Sui, H.T., Yang, D.M., Jiang, H., Ding, Y.L., and Yang, C.H., Ceram. Int., 2013, vol. 39, p. 1125.
  7. Allureda, B., De la Cruz, S., Darlinga, T., Hudac, M.N., and Subramanianb, V., Appl. Catal., B, 2014, vol. 144, p. 261.
  8. Gupta, S. and Leon, L., Phys. Chem. Chem. Phys., 2014, vol. 16, no. 25, p. 12719.
  9. Merka, O., Bahnemann, D., and Wark, M., Catal. Today, 2014, vol. 225, p. 102.
  10. Besikiotis, V., Ricote, S., Jensen, M.H., Norby, T., and Haugsrud, R., Solid State Ionics, 2012, vol. 229, p. 26.
  11. Piir, I.V., Koroleva, M.S., Ryabkov, Y.I., Korolev, D.A., Chezhina, N.V., Semenov, V.G., and Panchuk, V.V., J. Solid State Chem., 2013, vol. 204, p. 245.
  12. Piir, I.V., Koroleva, M.S., Sekushin, N.A., Grass, V.E., and Ryabkov, Yu.I., Russ. J. Electrochem., 2009, vol. 45, p. 817.
  13. Piir, I.V., Koroleva, M.S., Ryabkov, Y.I., Pikalova, E.Yu., Nekipelov, S.V., Sivkov, V.N., and Vyalikh, D.V., Solid State Ionics, 2014, vol. 262, p. 630.
  14. Krasnov, A.G., Piskaikina, M.M., and Piir, I.V., Khim. Interesakh Ustoich. Razvit., 2016, vol. 24, p. 687.
  15. Rodriguez-Carvajal, J., Physica B, 1993, vol. 192, p. 55.
  16. GOST 2409-2014 Ogneupory. Metod opredeleniya kazhushcheisya plotnosti, otkrytoi i obshchei poristosti, vodopogloshcheniya. Vved. 1.09.2015 (State Standard GOST 2409-2014. Refractory Materials. Method for Determining the Apparent Density, Open and Total Porosity, and Water Absorption. Introduction), Moscow: Standartinform, 2014.
  17. Hector, A.L. and Wiggin, S.B., J. Solid State Chem., 2004, vol. 177, p. 139.
  18. Hinojosa, B.B., Nino, J.C., and Asthagiri, A., Phys. Rev. B: Condens. Matter Mater. Phys., 2008, vol.77.
  19. Tan, K.B., Khaw, C.C., Lee, C.K., Zainal, Z., Tan, Y.P., and Shaari, H., Mater. Sci.-Pol., 2009, vol. 27, p. 825.
  20. Kamba, S., Porokhonskyy, V., Pashkin, A., Bovtun, V., Petzelt, J., Nino, J.C., Trolier-McKinstry, S., Lanagan, M.T., and Randall, C.A., Phys. Rev. B, 2002, vol. 66, p. 054106.
  21. Yaroshenko, F.A. and Burmistrov, V.A., Russ. J. Electrochem., 2015, vol. 51, p. 391.
  22. Turner, C.G., Esquivel-Elizondo, J.R., and Nino, J.C., J. Am. Ceram. Soc., 2014, p. 971763.