“One dimensional” double layer. The effect of size asymmetry of cations and anions on charge-storage in ultranarrow nanopores—an Ising model theory

C. Rochester C. Rochester , A. Sartor A. Sartor , G. Pruessner G. Pruessner , A. A. Kornyshev A. A. Kornyshev
Российский электрохимический журнал
Abstract / Full Text

We develop a statistical mechanical theory of charge storage in quasi-single-file ionophilic nanopores with pure room temperature ionic liquid cations and anions of different size. The theory is mapped to an extension of the Ising model exploited earlier for the case of cations and anions of the same size. We calculate the differential capacitance and the stored energy density per unit surface area of the pore. Both show asymmetry in the dependence on electrode potential with respect to the potential of zero charge, related to the difference in the size of the ions, which will be interesting to investigate experimentally. It also approves the increase of charge storage capacity via obstructed charging, which in these systems emerges for charging nanopores with smaller ions.

Author information
  • Department of Chemistry, Faculty of Natural Sciences, Imperial College London, SW7 2AZ, London, UK

    C. Rochester, A. Sartor & A. A. Kornyshev

  • Department of Physics, Faculty of Natural Sciences, Imperial College London, SW7 2AZ, London, UK

    C. Rochester

  • Department of Mathematics, Faculty of Natural Sciences, Imperial College London, SW7 2AZ, London, UK

    G. Pruessner

  1. Chmiola, J., Yushin, G., Gogotsi, Y., Portet, C., Simon, P., and Taberna, P.L., Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer, Science, 2006, vol. 313, p. 1760.
  2. Largeot, C., Portet, C., Chmiola, J., Taberna, P.-L., Gogotsi, Y., and Simon, P., Relation between the ion size and pore size for an electric double-layer capacitor. J. Am. Chem. Soc., 2008, vol. 130, p. 2730.
  3. Raymundo-Pinero, E., Kierczek, K., Machnikowski, J., and Beguin, F., Relationship between the Nanoporous Texture of activated carbons and their capacitance properties in different electrolytes, Carbon, 2006, vol. 44, p. 2498.
  4. Kondrat, S. and Kornyshev, A., Superionic state in double-layer capacitors with nanoporous electrodes, J. Phys.: Condens. Matter., 2011, vol. 23, no. 022201.
  5. Kondrat, S., Georgi, N., Fedorov, M.V., and Kornyshev, A.A., A superionic state in nano-porous doublelayer capacitors: insights from Monte Carlo simulations, Phys. Chem. Chem. Phys., 2011, vol. 13, p. 11359.
  6. Rochester, C., Lee, A.A., Pruessner, G., and Kornyshev, A.A., Interionic interactions in conducting nanoconfinement, Chem. Phys. Chem., 2013, vol. 14, p. 4121.
  7. Fedorov, M.V. and Kornyshev, A.A., Ionic liquids at electrified interfaces, Chem. Rev., 2014, vol. 114, p. 2978.
  8. Kornyshev, A.A., The simplest model of charge storage in single file metallic nanopores, Faraday Disc., 2013, vol. 164, p. 117.
  9. Baxter, R.G., Exactly Solved Models in Statistical Mechanics, London: Academic Press, 1982.
  10. Reichl, L.E., A Modern Course in Statistical Physics, 3rd ed., New York: Wiley-VCH, 2009.
  11. Cristensen, K. and Moloney, N.R., Complexity and Criticality, London: Imperial College Press-Worlds Scientific, 2005.
  12. Kondrat, S. and Kornyshev, A., Charging dynamics and optimization of nanoporous supercapacitors, J. Phys. Chem. C, 2013, vol. 117, p. 12399.
  13. Lee, A.A., Kondrat, S., Oshanin, G., and Kornyshev, A.A., Charging dynamics of a supercapacitor with narrow cylindrical nanopores, Nanotechnology, 2014, vol. 25, no. 315401.
  14. Kondrat, S., Wu, P., Qiao, R., and Kornyshev, A.A., Accelerating charging dynamics in subnanometer pores, Nat. Mater., 2014, vol. 13, p. 387.
  15. Lee, A.A., Kondrat, S., and Kornyshev, A.A., Singlefile charge storage in conducting nanopores, Phys. Rev. Lett., 2014, vol. 113, no. 048701.
  16. Griffin, J.M., Forse, A.C., Tsai, W.Y., Taberna, P.L., Simon, P., and Grey, C.P., In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors, Nat. Mater., 2015, vol. 14, p. 812.
  17. Forse, A.C., Griffin, J.M., Merlet, C., Bayley, P.M., Wang, H., Simon, P., and Grey, C.P., NMR study of ion dynamics and charge storage in ionic liquid supercapacitors, J. Am. Chem. Soc., 2015, vol. 137, p. 7231.
  18. Kondrat, S., Perez, C.R., Presser, V., Gogotsi, Yu., and Kornyshev, A.A., Effect of pore size and its dispersity on the energy storage in nanoporous supercapacitors, Energy Evironment. Sci., 2012, vol. 5, p. 6474.
  19. Simon, P. and Gogotsi, Y., Materials for electrochemical capacitors, Nat. Mater., 2008, vol. 7, p. 845.
  20. Kondrat, S. and Kornyshev, A.A., Pressing a spring: what does it take to maximize the energy storage in nanoporous supercapacitors?, Nanoscale Horizons, 2016, vol. 1, p. 45.
  21. Rochester, C.C., Kondrat, S., Pruessner, G., and Kornyshev, A.A., Charging ultrananoporous electrodes with size-asymmetric ions assisted by apolar solvent, J. Phys. Chem. C., 2016, vol. 120, p. 16042.