Thin Layer Multicycle Cathodic-Anodic Chronoamperometry of Atomic Hydrogen Injection–Extraction into Metals with Regard to the Stage of Phase Boundary Exchange

N. B. Morozova N. B. Morozova , A. V. Vvedenskii A. V. Vvedenskii , A. A. Maksimenko A. A. Maksimenko , A. I. Dontsov A. I. Dontsov
Российский электрохимический журнал
Abstract / Full Text

The method of potentiostatic anodic-cathodic chronoamperometry of atomic hydrogen injection into a metal film and its subsequent extraction is theoretically discussed. By combining the methods for studying the phase-structure state and surface morphology with multicycle cathodic-anodic chronoamperometry, the injection (and subsequent extraction) of atomic hydrogen into a 47Pd53Cu (at %) film synthesized by ion-plasma spraying is studied. It is found that the initial stage of hydrogenation proceeds under the mixed diffusion-phase-boundary control and passes to the purely diffusion control in 3–4 s. The main kinetic parameters of the stages of phase-boundary hydrogen penetration and its solid-phase diffusion are found. It is shown that the mass transfer in the film alloy proceeds mainly through the grain bodies rather than along intergrain boundaries. The increase in the β-phase content in the alloy leads to the noticeable increase in the diffusion coefficient of hydrogen, whereas the effective equilibrium constant of the phase-boundary process decreases.

Author information
  • Voronezh State University, Voronezh, 394018, Russia

    N. B. Morozova, A. V. Vvedenskii, A. A. Maksimenko & A. I. Dontsov

  1. Geld, P.V, Ryabov, R.A, and Mohracheva, L.P., Vodorod i fizicheskie svoistva metallov i splavov, (Hydrogen and Physical Properties of Metals and Alloys), Moscow: Nauka, 1985.
  2. Ageev, V.N., Beckman, I.N., Burmistrova, O.P. et al., in Vzaimodeistvie vodoroda s metallami (Interaction of Hydrogen with Metals), Zakharov, A.P., Ed., Moscow: Nauka, 1987.
  3. Zakharov, A.P., Zakharov, A.P., and Ageev, V.N., in Vzaimodeistvie vodoroda s metallami (Interaction of Hydrogen with Metals), Zakharov, A.P., Ed., Moscow: Nauka, 1987.
  4. Ievlev, V.M., Maksimenko, A.A., Belonogov, E.K., Dontsov, A.I., Gorina, N.B., and Roshan, N.R., The hydrogen permeability of thick films of Pd–Cu solid solution, Perspect. Mater., 2008, no. 6, p. 216.]
  5. Ievlev, V.M., Burkhanov, G.S., Roshan, N.R., Belonogov, E.K., Maksimenko, A.A., Dontsov, A.I., and Rudakov, K.E., Structure, mechanical properties and hydrogen permeability of membrane foils of Pd–Cu and Pd–Ru alloys, obtained by magnetron sputtering, Russ. Metall., 2012, no. 6, p. 92.
  6. Hydrogen in Metals, Vol. 1, Alefeld, G. and Völkl, J., Eds., Berlin: Springer, 1978.
  7. Gabrielli, C., Grand, P.P., Lasia, A., and Perrot, H., Investigation of hydrogen adsorption-absorption into thin palladium films. I. Theory, J. Electrochem. Soc., 2004, vol. 151, p. A1925.
  8. Tarek, A.K. and Heuser, B.J., Estimates of trapping of hydrogen at dislocations in Pd: Suggestions for future SANS experiments, Scr. Metall. Mater., 1995, vol. 32, p. 1619.
  9. Heuser, B.J. and King, J.S., SANS measurements of deuterium-dislocation trapping in deformed single Pd, J. Alloys Compd., 1997, vol. 261, p. 225.
  10. Myers, S.M., Baskes, M.I., Birnbaum, H.K., Corbett, J.W., DeLeo, G.G., Estreicher, S.K., Haller, E.E., Jena, P., Johnson, N.M., Kirchheim, R., Pearton, S.J., and Stavola, M.J., Hydrogen interaction in crystalline solids, Rev. Mod. Phys., 1992, vol. 64, p. 559.
  11. Goldbach, A., Yuan, L., and Xu, H., Impact of the fcc/bcc phase transition on the homogeneity and behavior of PdCu membranes, Sep. Purif. Technol., 2010, no. 73, p. 65.
  12. Ievlev, V.M., Belonogov, E.K., Maksimenko, A.A., Burkhanov, G.S., Roshan, N.R., and Shkatov, V.V., Structure and substructure of films of an ordered palladium-copper solid solution, Vestn. VGTU, Ser. Materialovedenie, 2005, no. 1.17, p. 9.
  13. Ievlev, V.M., Solntsev, K.A., Maksimenko, A.A., Kannykin, S.V., Belonogov, E.K., Dontsov, A.I., and Roshan, N.R., Formation of thin foil of the ordered Pd–Cu solid solution with a CsCl-type lattice during magnetron sputtering, Dokl. Akad. Nauk., 2014, vol. 457, no. 4–6, p.127.
  14. Vert, Zh.L. and Tverdovsky I.P., Dissolution and adsorption of hydrogen by disperse palladium-silver alloys, Zh. Fiz. Khim., 1953, vol. 28, p. 317.
  15. Morozova, N.B., Vvedenskii, A.V., and Beredina, I.P., The phase-boundary exchange and the non-steadystate diffusion of atomic hydrogen in Cu–Pd and Ag–Pd alloys. Part I. Analysis of the model, Prot. Met. Phys. Chem. Surf., 2014, vol. 50, p. 699.
  16. Morozova, N.B., Vvedenskii, A.V., and Beredina, I.P., The phase-boundary exchange and the non-steadystate diffusion of atomic hydrogen in Cu–Pd and Ag–Pd alloys. Part II. Experimental data, Prot. Met. Phys. Chem. Surf., 2015, vol. 51, p. 72.
  17. Sirota, D.S. and Pchelnikov, A.P., Anodic behavior of hydrogenated nickel in sodium hydroxide solutions, Prot. Met., 2004, vol. 40, p. 41.
  18. Maleeva, M.A., Rybkina, A.A., Marshakov, A.I., and Elkin, V.V., The effect of atomic hydrogen on the anodic dissolution of iron in a sulfate electrolyte studied with impedance spectroscopy, Prot. Met. Phys. Chem. Surf., 2008, vol. 44, p. 548.
  19. Tsygankova, L.E., Protasov, A.S., Balybin, D.V., and Makolskaya, N.A., Determination of the true constants of the hydrogen evolution and its solid-phase diffusion under adsorption conditions of the inhibitor, Korroz.: Mater. Zashch., 2009, no. 10, p. 34.
  20. Vigdorovich, V.I., Tsygankova, L.E., and Kopylova, E.Yu., Effect of sodium hydroarsenate on the kinetics of reduction of hydrogen ions at iron and on the hydrogen diffusion through a steel membrane from aqueous and ethylene glycol solutions of hydrochloric acid, Russ. J. Electrochem., 2003, vol. 39, p. 753.
  21. Morozova, N.B. and Vvedenskii, A.V., Phase-boundary exchange and nonstationary diffusion of atomic hydrogen in a metal film. I. Analysis of the current transient, Kondens. Sredy Mezhfaznye Granitsy, 2015, vol. 17, p. 451.
  22. Diagrammy sostoyaniya dvoinykh metallichskikh sistem: Spravochnik (Phase Diagrams of Double Metal Systems; Handbook), Lyakishev, N.P., Ed., Moscow: Mashinostroenie, 1997.
  23. Vvedenskii, A.V., Gutorov, I.A., and Morozova, N.B., Kinetics of cathodic hydrogen evolution on transition metals. II Experimental data, Kondens. Sredy Mezhfaznye Granitsy, 2010, vol. 12, p. 337.
  24. Vvedenskii, A.V., Kinetics of hydrogen evolution on a number of metals IB and VIIIB subgroups of the periodic system. Part I, Korroz.: Mater. Zashch., 2011, no. 11, p. 23.
  25. Kozaderov, O.A. and Vvedenskii, A.V., Massoperenos i fazoobrazovanie pri anodnom selektivnom rastvorenii gomogennykh splavov (Mass Transfer and Phase Formation during Anodic Selective Dissolution of Homogeneous Alloys), Voronezh: Nauchnaya kniga, 2014.
  26. Rietveld, H.M., The Rietveld method: A retrospection, Z. Kristallogr., 2010, vol. 225, p. 545.
  27. Petricek, V., Dusek, M., and Palatinus, L., Crystallographic computing system JANA2006: General features, Z. Kristallogr., 2014, vol. 229, p. 345.
  28. Avdyukhina, V.M., Revkevich, G.P., Nazmutdinov, A.Z., Burkhanov, G.S., Roshan, N.R., and Kolchugina, N.B., X-ray, synchrotron and neutron studies, Poverhnost, 2007, no. 10, p. 9.