Статья
2020

Capacitive Deionization of Water (A Review)


Yu. M. Volfkovich Yu. M. Volfkovich
Российский электрохимический журнал
https://doi.org/10.1134/S1023193520010097
Abstract / Full Text

The literature on capacitive deionization (CDI) of water is discussed. The CDI is a new method of water desalination which consists of pumping water to be deionized between highly disperse carbon electrodes with a certain potential difference applied to these electrodes. The CDI is characterized by the lower expenditure of energy as compared with the other desalination methods. Different modifications of CDI are considered such as membrane capacitive deionization (MCDI), CDI with redox reactions on electrodes, and CDI with flow-through electrodes. The dependence of CDI on the porous structure of electrodes, the size of hydrated ions, the type of carbon used for electrodes, the electric double layer capacitance, the presence of functional groups, the wettability of electrodes, the pH, and other factors is considered. The problems of the production of pure drinking water and also of the degradation of electrodes are discussed. The use of CDI in practice is described.

Author information
  • Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071, Moscow, Russia

    Yu. M. Volfkovich

References
  1. Subramani, A., Badruzzaman, M., Oppenheimer, J., and Jacangelo, J.G., Energy minimization strategies and renewable energy utilization for desalination, A review, Water Res., 2011, vol. 45, p. 1907.
  2. Volkov, V.V., Mchedlishvili, B.V., Roldugin, V.I., Ivanchev, S.S., and Yaroslavtsev, A.B., Review, Nanotechnol. Russ., 2008, vol. 3, p. 656.
  3. Farmer, J.C., Fix, D.V., Mack, G.V., Pekala, R.W., and Poco, J.F., The use of capacitive deionization with carbon aerogel electrodes to remove inorganic contaminants from water, Low Level Waste Conference, Orlando, USA (1995).
  4. Oren, Y., Desalination, capacitive deionization (CDI) for desalination and water treatment—past, present and future (a review), Desalination, 2008, vol. 228, p. 10.
  5. Strathmann, H., Ion-Exchange Membrane Processes in Water Treatment Sustainability Science and Engineering, Elsevier, 2010.
  6. Avraham, E., Noked, M., Bouhadana, Y., Soffer, A., and Aurbach, D., Limitations of charge efficiency in capacitive deionization II. On the behavior of cdi cells comprising two activated carbon electrodes, J. Electrochem. Soc., 2009, vol. 156, p. 157.
  7. Suss, M.E., Baumann, T.F., Bourcier, W.L., Spadaccini, C.M., Rose, K.A., Santiago, J.G., and Stadermann, M., Capacitive desalination with flow-through electrodes, Energy Environ. Sci., 2012, vol. 5, p. 9511.
  8. Rica, R.A., Ziano, R., Salerno, D., Mantegazza, F., and Brogioli, D. Thermodynamic relation between voltage-concentration dependence and salt adsorption in electrochemical cells, Phys. Rev. Lett, 2012, vol. 109, p. 156103.
  9. Porada, S., Zhao R., Van Der Wal, A., Presser, V., and Biesheuvel, P.M., Review on the science and technology of water desalination by capacitive deionization, Prog. Mater. Sci., 2013, vol. 58, p. 1388.
  10. Jande, Y.A.C. and Kim, W.S., Desalination using capacitive deionization at constant current, Desalination, 2013, vol. 329, p. 29.
  11. Soffer, A. and Folman, M., The electrical double layer of high surface porous on carbon electrode, J. Electroanal. Chem., 1972, vol. 38, p. 25.
  12. Li, H., Pan, L., Lu, T., Zhan, Y., Nie, C., and Sun, Z., A comparative study on electrosorptive behavior of carbon nanotubes and graphene for capacitive deionization, J. Electroanal. Chem., 2011, vol. 653, p. 40.
  13. Conway, B.E., Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Springer, 1999.
  14. Burke, A., Ultracapacitors: why, how, and where is the technology, J. Power Sources, 2000, vol. 91, p. 37.
  15. Volfkovich, Yu.M. and Serdyuk, T.M., Electrochemical capacitors, Russ. J. Electrochem., 2002, vol. 38, p. 935.
  16. Pandolfo, A.G. and Hollenkamp, A.F., Carbon properties and their role in supercapacitors, J. Power Sources, 2006, vol. 157, p. 11.
  17. Sharma, P. and Bhatti, T.S., A review on electrochemical double-layer capacitors, Energy Convers. Manage., 2010, vol. 51, p. 2901.
  18. Chen, H., Cong, T.N., Yang, W., Tan, C., Li, Y., and Ding, Y., Progress in electrical energy storage system: A critical review, Prog. Nat. Sci., 2009, vol. 19, p. 291.
  19. Volfkovich, Yu.M., Bograchev, D.A., Mikhalin, A.A., and Bagotsky, V.D., Supercapacitor carbon electrodes with high capacitance. J. Solid State Electrochem., 2014, vol. 18, p. 1351.
  20. Pandolfo, A.G. and Hollenkamp, A.F., Carbon properties and their role in supercapacitors, J. Power Sources, 2006, vol. 157, p. 11.
  21. Volfkovich, Y.M., Mazin, V.M., and Urisson, N.A., Operation of double-layer capacitors based on carbon materials, Russ. J. Electrochem., 1998, vol. 34, p. 740.
  22. Inagaki, M., Konno, H., and Tanaike, O., Carbon materials for electrochemical capacitors, J. Power Sources, 2010, vol. 195, p. 7880.
  23. Faisal, A., Marzooqi, Al., Amal, A., Ghaferi, A, Saadat, I., and Hilal, N., Application of capacitive deionisation in water desalination: A review, Desalination, 2014, vol. 342, p. 3.
  24. Bagotsky, V.S., Skundin, A.M., and Volfkovich, Yu.M., Electrochemical Power Sources. Batteries, Fuel Cells, Supercapacitors, New York: Wiley, 2015.
  25. Ma, X., Wang, H., Wu, Q., Zhang, J., Liang, D., Lu, S., and Xiang, Y., Bamboo like carbon microfibers derived from typha orientalis fibers for supercapacitors and capacitive deionization, J. Electrochem. Soc., 2019, vol. 166(2), p. A236.
  26. Zhao, R., Porada, S., Biesheuvel, P.M., and van der Wal A., Energy consumption in membrane capacitive deionization for different water recoveries and flow rates, and comparison with reverse osmosis, Desalination, 2013, vol. 330, p. 35.
  27. Kang, J., Kim, T, Jo, K, and Yoon J., Comparison of salt adsorption ability and energy consumption between constant current and constant voltage operation in capacitive deionization, Desalination, 2014, vol. 352, p. 52.
  28. Kim, T., Dykstra, J.E., Porada, S., Yoon, J., and Biesheuvel, P.M., Enhanced charge efficiency and reduced energy use in capacitive deionization by increasing the discharge voltage, J. Colloid Interface Sci., 2015, vol. 446, p. 317.
  29. Yang, Li., She, J., Jiansheng, Li., Sun, X., Shen, J., Han, W., and Wang, L., A protic salt-derived porous carbon for efficient capacitive deionization: Balance between porous structure and chemical composition, Carbon, 2017, vol. 116, p. 21.
  30. Krüner, B., Srimuk, P., Fleischmann, S., Zeiger, M., Schreiber, A., Aslan, M., Quade A., and Volker, P., Hydrogen-treated, sub-micrometer carbon beads for fast capacitive deionization with high performance stability, Carbon, 2017, vol. 117, p. 46.
  31. Choi, S., Chang, B., Kang, J.H., Diallo, M.S., and Choi, J.W., Energy-efficient hybrid FCDI-NF desalination process with tunable salt rejection and high water recovery, J. Membr. Sci., 2017, vol. 541, p. 580.
  32. Andelman, M., Flow through capacitor basics, Sep. Purif. Technol., 2011, vol. 80, p. 262.
  33. Anderson, M.A., Cudero, A.L., and Palma J., Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete? Electrochim. Acta, 2010, vol. 55, p. 3845.
  34. Xu, P., Jorg, E. Drewes, J.E., Heil, D., and Wang, G., Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology, Water Res., 2008, vol. 42, p. 2605.
  35. Strathmann, H., Ion-exchange Membrane Process: Their Principle and Practical Applications, Hopkinton: Balaban Desalination, 2016.
  36. Liu, S., Kyle, C., and Smith, K.C., Quantifying the trade between energy consumption and salt removal in membrane-free cation intercalation desalination, Electrochim. Acta., 2017, vol. 230, p. 333.
  37. Yang, S.C., Choi, J., Yeo, J., Jeon, S., Park, H., and Kim, D.K., Flow-electrode capacitive deionization using an aqueous electrolyte with a high salt concentration, Environ. Sci. Technol., 2016, vol.50, p. 5892.
  38. Biesheuvel, P.M., Bazant, M.Z., Cusick, R.D., Hatton, T.A., Hatzell, K.B., Hatzell, M.C., Liang, P., Lin, S., Porada, S., Santiago, J.G., Smith, K.C., Stadermann, M., Su, X., Sun, X., Waite, T.D., et al., Capacitive deionization–defining a class of desalination technologies, Appl. Phys., 2017, vol. 16, p. 19.
  39. Xie, J., Xue, Y., He, M., Luo, W., Wang, H., Wang, R., and Yan, Y.-M., Organic-inorganic hybrid binder enhances capacitive deionization performance of activated-carbon electrode, Carbon, 2017, vol. 123, p. 574.
  40. Tang, W., He, D., Zhang, C. T., and Waite, D., Optimization of sulfate removal from brackish water by membrane capacitive deionization (MCDI), Water Res., 2017, vol. 121, p. 302.
  41. Hassanvand, A., Chen, G.Q, Webley, P.A., and Kentish, S.E., Improvement of MCDI operation and design through experiment and modelling: Regeneration with brine and optimum residence time, Desalination, 2017, vol. 417, p. 36.
  42. Kim, J.-S. and Choi, J.-H. Fabrication and characterization of a carbon electrode coated with cation-exchange polymer for the membrane capacitive deionization applications, J. Membr. Sci., 2010, vol. 355, p. 85.
  43. Kim, Y.-J. and Choi, J.-H., Enhanced desalination efficiency in capacitive deionization with an ion-selective membrane, Sep. Purif. Technol., 2010, vol. 71, p. 70.
  44. Lee, J.-H. and Choi, J.-H., The production of ultrapure water by membrane capacitive deionization (MCDI) technology, J. Membr. Sci., 2012, vols. 409–410, p. 251.
  45. Li, H. and Zou, L., Ion-exchange membrane capacitive deionization: a new strategy for brackish water desalination, Desalination, 2011, vol. 275, p. 62.
  46. Lee, J.-B., Park, K.-K., Euma, H.-M., and Lee, C.-W., Desalination of a thermal power plant wastewater by membrane capacitive deionization, Desalination, 2006, vol. 196, p. 125.
  47. Kim, Y.-J. and Choi, J.-H., Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer, Water Res., 2010, vol. 44, p. 990.
  48. Biesheuvel, P.M., Zhao, R., Porada, S., and van der Wal, A. Theory of membrane capacitive deionization including the effect of the electrode pore space. J. Colloid Interface Sci., 2011, vol. 360, p. 239.
  49. Zhao, R., Satpradit, O., Rijnaarts, H.M., Biesheuvel, P.M., and van der Wal A., Optimization of salt adsorption rate in membrane capacitive deionization, Water Res., 2013, vol. 147, p. 1941.
  50. Lee, J.-Y., Seo, S.-J., Yun, S.-H., and Moon, S.-H., Preparation of ion exchanger layered electrodes for advanced membrane capacitive deionization (MCDI), Water Res., 2011, vol. 45, p. 5375.
  51. Biesheuvel, P.M. and van der Wal, A., Membrane capacitive deionization, J. Membr. Sci., 2010, vol. 346, p. 256.
  52. Yang, J., Zou, L., and Song H., Preparing MnO2/PSS/CNTs composite electrodes by layer-by-layer deposition of MnO2 in the membrane capacitive deionisation, Desalination, 2012, vol. 286, 2012, p. 108.
  53. Bai, Y., Huang, Z.-H., Yu, X.-L., and Kang, F., Graphene oxide-embedded porous carbon nanofiber webs by electrospinning for capacitive deionization, Colloids Surf. A, 2014, vol. 444, p. 153.
  54. El-Deen, A.G., Choi, J.H., Kima, C.S., Abdelrazek, K, Khalil, K.A., Almajid, A.A., and Barakat, N.A.M., TiO2 nanorod-intercalated reduced graphene oxide as high performance electrode material for membrane capacitive deionization, Desalination, 2015, vol. 61, p. 53.
  55. Gao, X., Omosebi, A., Holubowitch, N., Liua, A, Ruha, K., Landon, J., and Liu, K., Polymer-coated composite anodes for efficient and stable capacitive deionization, Desalination, 2016, vol. 399, p. 16.
  56. Zhao, Y., Wang, Y., Wang, R., Wu, Y., Xu, S., and Wang J., Performance comparison and energy consumption analysis of capacitive deionization and membrane capacitive deionization processes. Review, Desalination, 2013, vol. 324, p. 127.
  57. Zhao, Y., Wang, Y., Wang, R., Wu, Y., Xu, S., and Wang J., Energy consumption in membrane capacitive deionization for different water recoveries and flow rates, and comparison with reverse osmosis, Desalination, 2013, vol. 330, p. 35.
  58. Li, H., Gao, Y., Pan, L., Zhang, L., Chen, Y., and Sun, Z., Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes, Water Res., 2008, vol. 42, p. 4923.
  59. Wang, Z., Gong, H., Zhang, Y., Liang, P., and Wang, K., Nitrogen recovery from low-strength wastewater by combined membrane capacitive deionization (MCDI) and ion exchange (IE) process, Chem. Eng. J., 2017, vol. 316, p. 1.
  60. Singha, K., Poradab, S., de Gierb, H.D., Biesheuvel, P.M., and de Smeta, L.C.P.M., Timeline on the application of intercalation materials in Capacitive Deionization, Desalination, 2019, vol. 455, p. 115.
  61. Kang, J., Kima, T., Shin, T., Lee, J., Ha, J.-I., and Yoon J., Direct energy recovery system for membrane capacitive deionization, Desalination, 2016, vol. 398, p. 144.
  62. Dykstra, J.E., Zhao, R., Biesheuvel, P.M., and van der Wal, A., Resistance identification and rational process design in capacitive deionization, Water Res., 2016, vol. 88, p. 358.
  63. Bian, Y., Liang, P., Yang, X., Jiang, X., Zhang, C., and Huang, X., Using activated carbon fiber separators to enhance the desalination rate of membrane capacitive deionization, Desalination, vol. 381, p. 95.
  64. Dykstra, J.E., Keesman, K.J., Biesheuvel, P.M., van der Wal., A., Dykstra, J.E., Keesman, K.J., Biesheuvel P.M., and van der Wal. A., Theory of pH changes in water desalination by capacitive deionization, Water Res., 2017, vol. 119, p. 178.
  65. Lado, J.J, Rafael, L., Zornitta, R.L., Calvi, F.A., Tejedor-Tejedor, M.I., Anderson, M.A., and Ruotolo, L.A.M., Enhanced capacitive deionization desalination provided by chemical activation of sugar cane bagasse fly ash electrodes, J. Anal. Appl. Pyrolysis, 2017, vol. 126, p. 143.
  66. Tang, W., He, D., Zhang, C., Kovalsky, P., and Waite, T.D., Comparison of Faradaic reactions in capacitive deionization (CDI) and membrane capacitive deionization (MCDI) water treatment processes, Water Res., 2017, vol. 120, p. 229.
  67. Tang, W., He, D., Zhang, C., and Waite, T.D., Optimization of sulfate removal from brackish water by membrane capacitive deionization (MCDI), Water Res., vol. 2017, p. 302.
  68. Hassanvand, A., Chen, G.Q., Webley, P.A., and Kentish, S.E., Improvement of MCDI operation and design through experiment and modelling: Regeneration with brine and optimum residence time, Desalination, 2017, vol. 417, p. 36.
  69. Kim, Y.-J. and Choi, J.-H., Selective removal of nitrate ion using a novel composite carbon electrode in capacitive deionization, Water Res., 2012, vol. 46, p. 6033.
  70. Koo, J.S., Kwak, N.-S., Hwang, T.S., Koo, J.S., Kwak, N.-S., and Hwang, T.S., Synthesis and properties of an anion-exchange membrane based on vinylbenzylchloride–styrene–ethylmethacrylatecopolymers, J. Membr. Sci., vols. 423–424, p. 293.
  71. Li, H., Gao, Y., Pan, L., Zhang, Y., Chen, Y., and Sun, Z., Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes, Water Res., 2008, vol. 42, p. 4923.
  72. Rommerskirchena, A., Ohsb, B., Hepp, K.A., Femmer, R., and Wessling M., Modeling continuous flow-electrode capacitive deionization processes with ion-exchange membranes, J. Membr. Sci., 2018, vol. 546, p. 188.
  73. Smith, K.C., Theoretical evaluation of electrochemical cell architectures using cation intercalation electrodes for desalination, Electrochim. Acta, 2017, vol. 230, p. 333.
  74. Wang, L., Biesheuvel, P.M., and Lin, S, Reversible thermodynamic cycle analysis for capacitive deionization with modified Donnan model, J. Colloid Interface Sci., 2018, vol. 512, p. 522.
  75. Starthman, H, Ion-exchange Membrane Processes: Their Principle and Practical Applications, Stuttgart: Balaban Desalination, 2016.
  76. Bian, Y., Yang, X., Liang, P., Jiang, Y., Zhang, C., and Huang, X., Enhanced desalination performance of membrane capacitive deionization cells by packing the flow chamber with granular activated carbon, Water Res., 2015, vol. 85, p. 371.
  77. He, F., Biesheuvel, P.M., Bazant, M.Z., and Hatton, T.A., Theory of water treatment by capacitive deionization with redox active porous electrodes, Water Res., 2018, vol. 132, p. 282.
  78. Achilleos, D.S. and Hatton, T.A., Selective molecularly mediated pseudocapacitive separation of ionic species in solution, ACS Appl. Mater. Interfaces, 2016, vol. 8, p. 32743.
  79. Su, X. and Hatton, T.A., Electrosorption at functional interfaces: from molecular level interactions to electrochemical cell design, Phys. Chem. Chem. Phys., 2017, vol. 19, p. 23570.
  80. Su, X. and Hatton, T.A., Redox-electrodes for selective electrochemical separations, Adv. Colloid Interface Sci., 2017, vol. 244, p. 6.
  81. Su, X., Hübner, J., Kauke, M.J., Dalbosco, L., Thomas, J., Gonzalez, C.C., Zhu, E., Franzreb, M., Jamison, T.F., and Hatton, T.A., Redox interfaces for electrochemically controlled protein-surface interactions: bioseparations and heterogeneous enzyme catalysis, Chem. Mater., 2017, vol. 29, p. 5702.
  82. Su, X., Kulik, H.J., Jamison, T.F., and Hatton, T.A., Anion-selective redox electrodes: electrochemically mediated separation with heterogeneous organometallic interfaces, Adv. Funct. Mater., 2016, vol. 26, p. 3394.
  83. Su, X., Tan, K.-J., Elbert, J., Rüttiger, C., Gallei, M., Jamison, T.F., and Hatton, T.A., Asymmetric faradaic systems for selective electrochemical separations, Energy Environ. Sci., 2017, vol. 10, p. 1272.
  84. Smith, K.C., Theoretical evaluation of electrochemical cell architectures using cation intercalation electrodes for desalination, Electrochim. Acta, 2017, vol. 230, p. 333.
  85. Liu, S. and Smith, K.S., Quantifying the trade-offs between energy consumption and salt removal rate in membrane-free cation intercalation desalination, Electrochim. Acta, 2018, vol. 271, p. 652.
  86. Porada, S., Shrivastava, A, Bukowska, P., Biesheuvel, P.M., and Smith, K.S., Nickel hexacyanoferrate electrodes for continuous cation intercalation desalination of brackish water, Electrochim. Acta, 2017, vol. 255, p. 369.
  87. Yang, S.C., Choi, J., Yeo, J., Jeon, S, Park, H, and Kim, D.K., Flow-electrode capacitive deionization using an aqueous electrolyte with a high salt concentration, Environ. Sci. Technol., 2016, vol. 50, p. 5892.
  88. Walker, P.J., Mauter, M.S., and Whitacre. J.F., Electrodeposited MnO2 for pseudocapacitive deionization: Relating deposition condition and electrode structure to performance, Electrochim. Acta, 2015, vol. 182, p. 1008.
  89. Guyes, E.N., Shocron, A.N., Simanovski, A., Biesheuvel, P.M., and Suss, M.E., A one-dimensional model for water desalination by flow-through electrode capacitive deionization, Desalination, 2017, vol. 415, p. 8.
  90. Kim, T, Dykstra, J.E., Porada, S., van der Wal, A, Yoon, J., and Biesheuvel, P.M., Enhanced charge efficiency and reduced energy use in capacitive deionization by increasing the discharge voltage, J. Colloid Interface Sci., 2015, vol. 446, p. 317.
  91. Hatzel, K.B, Iwama, E., Ferris A., Daffos, B, Uritab, K, Tzedakisc, T., Chauvet, F., Taberna, P-L, Gogotsi, Y., and Simon, P., Capacitive deionization concept based on suspension electrodes without ion exchange membranes, Electrochem. Commun., 2014, vol. 43, p. 18.
  92. Gendel, G, Klara, A, Rommerskirchen, E, David, O, and Wessling M., Batch mode and continuous desalination of water using flowing carbon deionization (FCDI) technology, Electrochem. Commun., 2014, vol. 46, p. 152.
  93. Rommerskirchen, A, Gendel, and Y. Wessling M., Single module flow-electrode capacitive deionization for continuous water desalination, Electrochem. Commun., 2015, vol. 60, p. 34.
  94. Wang, M., Hou, S, Liu, Y, Ting, X. Zhao, L.R., and Pan, L., Capacitive neutralization deionization with flow electrodes, Electrochim. Acta, 2016, vol. 216, p. 211.
  95. Nativ, P., Badash, Y., and Gendel, Y., New insights into the mechanism of flow-electrode capacitive deionization, Electrochem. Commun., 2017, vol. 76, p. 24.
  96. Choo, K.Y., Yoo, C.Y., Han, M.H., and Kim, D.K., Choo, K.Y., Yoo, C.Y., Han, M.H., and Kim, D.K., Electrochemical analysis of slurry electrodes for flow-electrode capacitive Deionization, J. Electroanal. Chem., 2017, vol. 806, p. 50.
  97. Yang, S.C., Choi, J. Yeo, J., Jeon, S., Park, H., and Kim D.K., Flow-electrode capacitive deionization using an aqueous electrolyte with a high salt concentration, Environ. Sci. Technol., 2016, vol. 50, p. 5892.
  98. Lu, D., Cai, W., and Wang, Y., Optimization of the voltage window for long-term capacitive deionization stability, Desalination, 2017, vol. 424, p. 53.
  99. Volfkovich, Yu.M., Bograchev, D.A., Mikhalin, A.A., Rychagov, A.Yu., Sosenkin, V.E., and Park, D.C, Capacitive deionization of aqueous solutions. modeling and experiments, Desalin. Water Treat., 2017, vol. 69, p. 130.
  100. Volfkovich, Yu.M., Filippov, A.N., and Bagotsky, V.S., Structural Properties of Porous Materials and Powders Used in Different Fields of Science and Technology, New York: Springer, 2014.
  101. Rouquerol, J., Baron, G., Denoyel, R., Giesche, H., Groen, J., Klobes, P., Levitz, P., Neimark, A.V., Rigby, S., Skudas, R., Sing, K., Thommes, M., and Unger, K., Liquid intrusion and alternative methods for the characterization of macroporous materials, Pure Appl. Chem., 2012, vol. 84, p. 107.
  102. Drake, C., Pore-size distribution in porous materials, Ind. Eng. Chem., 1949, vol. 1, p. 780.
  103. Gregg, S.J. and Sing, K.S.W., Adsorption, Surface Area and Porosity, New York: Academic, 1967.
  104. https://en.wikipedia.org/wiki/Electron_microscope.
  105. Tersoff, J. and Hamann, D.R., Theory of the scanning tunneling microscope, Phys. Rev., 1985, vol. 31, p. 805.
  106. Dietz, P., Hansma, P.K., and Inacker, O., Surface pore structures of micro- and ultrafiltration membranes imaged with the atomic force microscope, J. Membr. Sci., 1992, vol. 65, p. 101.
  107. Yurov, V.Y. and Klimov, A.N., Scanning tunneling microscope calibration and reconstruction of real image: Drift and slope elimination., Rev. Sci. Instrum., 1994, vol. 65, p. 1551.
  108. Volfkovich, Yu.M., Filippov, A.N., and Bagotsky, V.S., Structural Properties of Porous Materials and Powders Used in Different Fields of Science and Technology, New York: Springer, 2014.
  109. Volfkovich, Yu.M. and Bagotzky, V.S., The method of standard porosimetry 2. Investigation of the formation of porous structures, J. Power Sources, 1994, vol. 48, p. 339.
  110. Volfkovich, Yu.M., Bagotzky, V.S., Sosenkin, V.E., and Blinov, I.A., The standard contact porosimetry, Colloids Surf., A, 2001, vol. 187, p. 349.
  111. Volfkovich, Yu.M., Sakars, A.V., and Volinsky, A.A., Application of the standard porosimetry method for nanomaterials, Int. J. Nanotechnol., 2005, vol. 2, p. 292.
  112. Dzyazko, Yu.S., Ponomaryova, L.N., Volfkovich, Yu.M., Sosenkin, V.E., and Belyakov, V.N., Polymer ion-exchangers modified with zirconium hydrophosphate for removal of Cd2+ ions from diluted solutions, Sep. Sci. Technol., 2013, vol. 48, p. 2140.
  113. Volfkovich, Yu.M., Blinov, I.A., and Sakar, A.V., US Patent 7,059,175 (2006).
  114. Li, G-X., Hou, P.-X., Zhao, S.-Y., Chang, Liu, and Cheng, H.-M., A flexible cotton-derived carbon sponge for high-performance capacitive deionization, Carbon, 2016, vol. 101, p. 1.
  115. Kohli, D.K., Bhartiya, S., Singh, A., Singh, R., Singh, M.K., and Gupta, P.K., Capacitive deionization of ground water using carbon aerogel based electrodes, Desalin. Water Treat., 2016, vol. 57, p. 1.
  116. Xu, X., Liu, Y., Wang, M., Zhu, C., Lu, T., Zhao, R., and Pan, L., Hierarchical hybrids with microporous carbon spheres decorated three-dimensional graphene frameworks for capacitive applications in supercapacitor and deionization, Electrochim. Acta, 2016, vol. 193, p. 88.
  117. Xu, X., Pan, L., Liu, Y., Lu, T., and Sun, Z., Enhanced capacitive deionization performance of graphene by nitrogen doping, J. Colloid Interface Sci., 2015, vol. 445, p. 143.
  118. Zhao, S., Yan, T., Wang, H., Chen, G., Huang, L., Zhang, J., Shi, L., and Zhang, D., High ability and high rate capability of nitrogen-doped porous hollow carbon spheres for capacitive deionization, Appl. Surf. Sci., 2016, vol. 369, p. 460.
  119. Li, J., Ji, B., Jiang, R., Zhang, P., Chen, N., Zhang, G., and Qu, L., Hierarchical hole-enhanced 3D graphene assembly for highly efficient capacitive deionization, Carbon, 2018, vol. 129, p. 95.
  120. Feng, J., Yang, Z., Hou, S., Li, M., Lv, R., Kanga, F., and Huang, Z.-H., GO/auricularia-derived hierarchical porous carbon used for capacitive deionization with high performance. Colloids Surf., A, 2018, vol. 547, p. 134.
  121. Cao, J., Wang, Y., Chen, C., Yu, F., and Ma, J., A Comparison of graphene hydrogels modified with single-walled/multi-walled carbon nanotubes as electrode materials for capacitive deionization, J. Colloid Interface Sci., 2018, vol. 518, p. 69.
  122. Kim, C., Srimuk, P., Lee, J., Fleischmann, S., Aslan, M., and Presser, V., Influence of pore structure and cell voltage of activated carbon cloth as a versatile electrode material for capacitive deionization, Carbon, 2017, vol. 122, p. 329.
  123. Chena, Z., Zhang, H., Wu, C., Luo, L., Wang, C., Huang, S., and Xu, H., A study of the effect of carbon characteristics on capacitive deionization (CDI) performance, Desalination, 2018, vol. 433, p. 68.
  124. Chen, Z., Zhang, H., Wu, C., Wang, Y., and Li, W., A study of electrosorption selectivity of anions by activated carbon electrodes in capacitive deionization, Desalination, 2015, vol. 369, p. 46.
  125. Liu, P.-I., Chung, L.-C., Ho, C.-H., Shao, H., Liang, T.-M., Chang, M.-C, Ma, C.-C.M., and Horng, R.-Y., Comparative insight into the capacitive deionization behavior of the activated carbon electrodes by two electrochemical techniques, Desalination, 2016, vol. 379, p. 34.
  126. Zornitta, R.L., Lado, J.J., Anderson, M.A., Luís, and Ruotolo, A.M., Effect of electrode properties and operational parameters on capacitive deionization using low-cost commercial carbons, Sep. Purif. Technol., 2016, vol. 158, p. 39.
  127. Li, H., Zou, L., Pan,L., and Sun, Z., Using graphene nano-flakes as electrodes to remove ferric ions by capacitive deionization, Sep. Purif. Technol., 2010, vol. 75, p. 8.
  128. Li, L., Zou, L., Song, H., and Morris, G., Ordered mesoporous carbons synthesized by a modified sol–gel process for electrosorptive removal of sodium chloride, Carbon, vol. 47, p. 775.
  129. Nadakatti, S., Tendulkar, M., and Kadam, M., Use of mesoporous conductive carbon black to enhance performance of activated carbon electrodes in capacitive deionization technology, Desalination, 2011, vol. 268, p. 182.
  130. Wang, L., Wang, M., Huang, Z.-H., Cui, T., Gui, X., Kang, F., Wang, K., and Wu., D., Capacitive deionization of NaCl solutions using carbon nanotube sponge electrodes, J. Mater. Chem., 2011, vol. 21, p. 18295.
  131. Zhang, D., Wen, X., Shi, L., Tingting, Y., and Zhang, J., Enhanced capacitive deionization of graphene/mesoporous carbon composites, Nanoscale, 2012, vol. 4, p. 5440.
  132. Wang, G., Dong, Q., Ling, Z., Pan, C., Yu, C., and Qiu, J., Hierarchical activated carbon nanofiber webs with tuned structure fabricated by electrospinning for capacitive deionization, J. Mater. Chem., 2012, vol. 22, p. 21819.
  133. Wen, X., Zhang, D., Shi, L., Yan, T., Wang, H. and Zhang, H., Wen, X., Zhang, D., Shi, L., Yan, T., Wang, H., and Zhang, H., Three-dimensional hierarchical porous carbon with a bimodal pore arrangement for capacitive deionization, J. Mater. Chem., 2012, vol. 22, p. 23835.
  134. Volfkovich, Yu.M., Bograchev, D.A., Mikhalin, A.A., Rychagov, A.Yu., Sosenkin, V.E., Milyutin, V.V., and Park, D., Electrodes based on carbon nanomaterials: Structure, properties and application to capacitive deionization in static cells, in Nano-Optics, Nanophotonics, Nanomaterials, and Their Applications, Fesenko, O. and Fesenko, L., Shpringer Proc. Publ., 2018, p. 127.
  135. https://www.czl.ru/applications/contact-angle-measurement-technology/.
  136. Seo, S.-J., Jeon, H., Lee, J.K., Kim, J.-Y., Park, D., Nojima, H., Lee, J., and Moon, S.-H., Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications, Water Res., 2010, vol. 44, p. 2267.
  137. Lee, J.B., Park, K.K., Yoon, S.-W., Park, P.-W., Park, K.-I., and Lee, C.-W., Desalination performance of a carbon-based composite electrode, Desalination, vol. 237, p. 155.
  138. Jia, B. and Zou, L., Wettability and its influence on graphene nanosheets as electrode material for capacitive deionization, Chem. Phys. Lett., vol. 548, p. 23.
  139. Lu, G., Wang, G., Wang, P.-H., Yang, Z., Yana, Ni, W., Zhang, L., and Yan, W.M., Enhanced capacitive deionization performance with carbon electrodes prepared with a modified evaporation casting method, Desalination, vol. 386, p. 32.
  140. Rulison, C., Wettability studies for porous solids including powders and fibrous materials, Krüss Technical Note no. 302, 1996.
  141. Alencherrya, T., R.N.A., Ghosha, S., Daniela, J., and R, V, Effect of increasing electrical conductivity and hydrophilicity on the electrosorption ability of activated carbon electrodes for capacitive deionization, Desalination, vol. 415, p. 14.
  142. Volfkovich, Yu.M., Rychagov. A.Yu., Mikhalin, A.A., Kardash, M.M., Kononenko, N.A., Ainetdinov, D.V., Shkirskaya, S.A., and V.E. Sosenkin, Capacitive deionization of water using mosaic membrane, Desalination, vol. 426, p. 1.
  143. Zhou, F., Gao, T., Luo, M., and Haibo, Li, Heterostructured graphene@Na4Ti9O20 nanotubes for asymmetrical capacitive deionization with ultrahigh desalination ability, Chem. Eng. J., vol. 343, p. 8.
  144. Volfkovich, Yu.M., Capacitive deionization of water (review), in:Membrane and Sorption Materials and Technologies: Present and Future, Dzyazko, Yu. S., Plisko, Y.V., and Chabam, M.O., (Eds.), Kyiv: ArtOK 2018, p. 79.
  145. Zornitta, R.L., García-Mateos, F.J., Lado, J.J., Rodríguez-Mirasol, J., Cordero, T., Hammer, P., and Ruotolo, L.A.M., Study of sugar cane bagasse fly ash as electrode material for capacitive deionization, J. Anal Appl. Pyrolysis, 2016, vol. 120, p. 389.
  146. Zornitta, R.L., García-Mateos, F.J., Lado, J.J., Rodríguez-Mirasol, J., Cordero, T., Hammer, P., and Ruotolo, L.A.M., High-performance activated carbon from polyaniline for capacitive deionization, Carbon, 2017, vol. 123, p. 318.
  147. Tarasevich, M.R., Elektrokhimiya uglerodnykh materialov (Electrochemistry of Carbon Materials), Moscow: Nauka, 1984.
  148. H.J., Lee, J.-H., Jeong, Y., Lee, J.-H., Chi e, C.-S., and Oh, H.-J., Nanostructured carbon cloth electrode for desalination from aqueous solutions, Mater. Sci. Eng. A, 2007, vol. 449, p. 841.
  149. Kim, C., Lee, J., Kim, S., Yoon, J., Kim, C., Lee, J., Kim, S., and Yoon, J., TiO2 sol–gel spray method for carbon electrode fabrication to enhance desalination efficiency of capacitive deionization, Desalination, 2014, vol. 342, p. 70.
  150. Liu, P.-I., Chung, L.-C., Ho, C.-H., Shao, H., Liang, T.-M., Horng, R.-Y., Chang, M.C., and Ma, C. C.-M., Effects of activated carbon characteristics on the electrosorption ability of titanium dioxide/activated carbon composite electrode materials prepared by a microwave-assisted ionothermal synthesis method, J. Colloid Interface Sci., 2015, vol. 446, p. 352.
  151. Myint, M.T.Z., Al-Harthi, S.H., and Dutta, J., Brackish water desalination by capacitive deionization using zinc oxide micro/nanostructures grafted on activated carbon cloth electrodes, Desalination, 2014, vol. 344, p. 236.
  152. Yang, J., Zou, L., and Song, H., Preparing MnO2/PSS/CNTs composite electrodes by layer-by-layer deposition of MnO2 in the membrane capacitive deionisation, Desalination, 2012, vol. 286, p. 108.
  153. Yasin, A.S., Jeong, J.J., Mohamed, I.M.A., Park, C.H., and Kim, C.S., Fabrication of N-doped &SnO2-incorporated activated carbon to enhance desalination and bio-decontamination performance for capacitive deionization, J. Alloys Compd., 2017, vol. 729, p. 764.
  154. Yang, J., Zou, L., Song, H., and Hao, Z., Development of novel MnO2/nanoporous carbon composite electrodes in capacitive deionization technology, Desalination, vol. 276, p. 199.
  155. Liu, J., Lu, M., Yang, J., Cheng, J., and Cai, W., Capacitive desalination of ZnO/activated carbon asymmetric capacitor and mechanism analysis, Electrochim. Acta, 2015, vol. 151, p. 312.
  156. El-Deen, A.G., Barakat, N.A.M., and Kim, H.Y., Graphene wrapped MnO2-nanostructures as effective and stable electrode materials for capacitive deionization desalination technology, Desalination, 2014, vol. 344, p. 289.
  157. Li, H., Ma, Y., Li, R.N.H., Ma, Y., and Niu, R., Improved capacitive deionization performance by coupling TiO2 nanoparticles with carbon nanotubes, Sep. Purif. Technol., 2016, vol. 171, p. 93.
  158. El-Deen, A.G., Barakat, N.A.M., Khalil, K.A., Motlak, M., and Kim, H.Y., Graphene/SnO2 nanocomposite as an effective electrode material for saline water desalination using capacitive deionization, Ceram. Int., 2014, vol. 40, p. 14627.
  159. Gu, X., Hu, M., Du, Z., Huang, J., and Wang, C., Fabrication of mesoporous graphene electrodes with enhanced capacitive deionization, Electrochim. Acta, 2015, vol. 182, p.183.
  160. Yasin, A.S., Mohamed, H.O., Mohamed, I.M.A., Mousa, H.M., and Barakat, N.A.M., Enhanced desalination performance of capacitive deionization using zirconium oxide nanoparticles-doped graphene oxide as a novel and effective electrode, Sep. Purif. Technol., 2016, vol. 171, p. 34.
  161. Byles, B.W., Cullen, D.A., More, K.L., and Pomerantseva, E., Tunnel structured manganese oxide nanowires as redox active electrodes for hybrid capacitive deionization, Nano Energy, 2018, vol. 44, p. 476.
  162. Divyapriya, G., Vijayakumar, K.K., and Nambi, I., Development of a novel graphene/Co3O4 composite for hybrid capacitive deionization system, Desalination, 2018, vol. 451, p. 102.
  163. Chang, L.M.C., Duan, X.Y., and Liu, W., Preparation and electrosorption desalination performance of activated carbon electrode with titania, Desalination, 2011, vol. 270, p. 285.
  164. Leonard, K.C., Genthe, J.R., Sanfilippo, J.L., Zeltner, W.A., and Anderson, M.A., Synthesis and characterization of asymmetric electrochemical capacitive deionization materials using nanoporous silicon dioxide and magnesium doped aluminum oxide, Electrochim. Acta, 2009, vol. 54, p. 5286.
  165. Myint, M.T.Z. and Dutta J., Fabrication of zinc oxide nanorods modified activated carbon cloth electrode for desalination of brackish water using capacitive deionization approach, Desalination, 2012, vol. 305, p. 24.
  166. Ryoo, M.W. and Seo, G., Improvement in capacitive deionization function of activated carbon cloth by titania modification, Water Res., 2003, vol. 37, p. 1527.
  167. Yang, J., Zou, L., Song, H., and Hao, Z., Development of novel MnO2/nanoporous carbon composite electrodes in capacitive deionization technology, Desalination, 2011, vol. 276, p. 199.
  168. Yoon, H., Lee, J., Kim S., and Yoon, J., Hybrid capacitive deionization with Ag coated carbon composite electrode, Desalination, 2017, vol. 422, p. 42.
  169. Rodolfo, J.J., Pérez-Roa, E., Wouters, J.J., Tejedor-Tejedor, M.M., Federspill, C., Ortiz, J.M., and Anderson, M., Removal of nitrate by asymmetric capacitive deionization, Sep. Purif. Technol., 2017, vol. 183, p. 145.
  170. Cai, Y., Wang, Y., Han, X, Zhang, L., Xua, S, Wang, J, Cai, Y., Wang, Y., Han, X., Zhang, L., Xu, S., and Wang, J., Optimization on electrode assemblies based on ion-doped polypyrrole/carbon nanotube composite in capacitive deionization process, J. Electroanal. Chem., 2016, vol. 768, p. 72.
  171. Jo, H., Kim, K.H., Jung, M.-J., Park, J.H., and Lee, Y.-S., Fluorination effect of activated carbons on performance of asymmetric capacitive deionization, Appl. Surf. Sci., 2017, vol. 409, p. 17.
  172. Li, Y., Liu, Y., Wang, M., Xu, X., Lu, T., Sun, C.Q., and Pan, L., Phosphorus-doped 3D carbon nanofiber aerogels derived from bacterial-cellulose for highly-efficient capacitive deionization, Carbon, 2018, vol. 130, p. 377.
  173. Wang, M., Xu, X., Yanjiang, Y.Li, Lu, T., and Pan, L., From metal-organic frameworks to porous carbons: A promising strategy to prepare high-performance electrode materials for capacitive deionization, Carbon, 2016, vol. 108, p. 433.
  174. Xu, X., Pan, L., Liu, Y., Lu, T., and Sun, Z., Enhanced capacitive deionization performance of graphene by nitrogen doping, J. Colloid Interface Sci., 2015, vol. 445, p. 143.
  175. Zhao, S., Yan, T., Wang, H., Chen, G., Huang, L., Zhang, J., Shi, L., Zhao, D.Z.S., Yan, T., Wang, H., Chen, G., Huang, L., Zhang, J., Shi, L., and Zhang, D., High ability and high rate capability of nitrogen-doped porous hollow carbon spheres for capacitive deionization, Appl. Surf. Sci., 2016, vol. 369, p. 460.
  176. Liu, Y., Chen, T., Lu, T., Sun, Z., Chua, D.H.C., and Panm, L., Nitrogen-doped porous carbon spheres for highly efficient capacitive deionization, Electrochim. Acta, 2015, vol. 158, p. 403.
  177. Li, Y., Hussain, I., Qi, J., Liu, C., Li, J., Shen, J., Sun, X., Han, W., and Wang, L., N-doped hierarchical porous carbon derived from hypercrosslinked diblock copolymer for capacitive deionization, Sep. Purif. Technol., 2016, vol. 165, p. 190.
  178. Wu, T., Wang, G., Dong, Q., Qian, B., Meng, Y., and Qiu, J., Asymmetric capacitive deionization utilizing nitric acid treated activated carbon fiber as the cathode, Electrochim. Acta, 2015, vol. 176, p. 426.
  179. Niu, R., Li, H., Ma, Y., He, L., and Li, J. An insight into the improved capacitive deionization performance of activated carbon treated by sulfuric acid, Electrochim. Acta, 2015, vol. 176, p. 755.
  180. Wang, G., Pana, C., Wang, L., Dong, Q., Yu, C., Zhao, Z., and Qiu, J., Activated carbon nanofiber webs made by electrospinning for capacitive deionization, Electrochim. Acta, 2012, vol. 69, p. 65.
  181. Nadakatti, S., Tendulkar, M., and Kadam, M., Use of mesoporous conductive carbon black to enhance performance of activated carbon electrodes in capacitive deionization technology, Desalination, 2011, vol. 268, p. 182.
  182. Oh, H.-J., Lee, J.-H., Ahn, H.-J., Jeong, Y., Kim, Y.-J., and Chi, C.-S., Nanoporous activated carbon cloth for capacitive deionization of aqueous solution, Thin Solid Films, 2006, vol. 515, p. 220.
  183. Dong, Q., Wang, G., Qian, B., Hu, C., Wang, Y., and Qiu, J., Electrospun composites made of reduced graphene oxide and activated carbon nanofibers for capacitive deionization, Electrochim. Acta, 2014, vol. 137, p. 388.
  184. Dong, Q., Wang, G., Wu, T., Peng, S., and Qiu, J., Enhancing capacitive deionization performance of electrospun activated carbon nanofibers by coupling with carbon nanotubes, J. Colloid Interface Sci., 2015, vol. 446, p. 373.
  185. Liu, X, Chen, T., Qiao, W., Wang, Z., and Yu, L., Fabrication of graphene/activated carbon nanofiber composites for high performance capacitive deionization, J. Taiwan Inst. Chem. Eng., 2017, vol. 72, p. 213.
  186. Volfkovich, Yu.M., Ponomarev, Iv.I., Sosenkin, V.E. Ponomarev, I.I., Skupov, K.M., and Razorenov, D.Yu., A porous structure of nanofibrous electrospun polyacrylonitrile-based materials: a standard contact porosimetry study, Prot. Met. Phys. Chem. Surf., 2019, vol. 55, p. 194.
  187. Gao, Y., Pan, L., Li, H., Zhang,Y., Zhang, Z., Chen, Y., and Sun, Z., Electrosorption behavior of cations with carbon nanotubes and carbon nanofibres composite film electrodes, Thin Solid Films, 2009, vol, 517, p. 1616.
  188. Pan, L., Wang, X., Gao, Y., Zhang, Y., Chen, Y., and Sun, Z., Electrosorption of anions with carbon nanotube and nanofibre composite film electrodes, Desalination, 2009, vol. 244, p. 139.
  189. Li, H., Pan, L., Zhang, Y., Zou, L., Sun, C., Zhan, Y., and Sun, Z., Kinetics and thermodynamics study for electrosorption of NaCl onto carbon nanotubes and carbon nanofibers electrodes, Chem. Phys. Lett., 2010, vol. 485, p. 161.
  190. Volfkovich, Yu.M., Rychagov, A.Yu., Sosenkin, V.E., and Krestilin, A.V., High-power electrochemical supecapacitor based on carbon nanotubes, Elektrokhim. Energ., 2008, vol. 8, p. 106.
  191. Volfkovich, Yu.M. Rychagov, A.Yu., Sosenkin, V.E., Efimov, O.N., Os’makov, M.I., and Seliverstov, A.F., Measuring the specific surface area of carbon nanomaterials by different methods, Russ. J. Electrochem., 2014, vol. 50, p. 1099.
  192. Wang, Z., Dou, B., Zheng, L., Zhang, G., Liu, Z., and Hao, Z., Effective desalination by capacitive deionization with functional graphene nanocomposite as novel electrode material, Desalination, 2012, vol. 299, p. 96.
  193. Mohanapriya, K., Ghosh, G., and Jha, N., Solar light reduced graphene as high energy density supercapacitor and capacitive deionization electrode, Electrochim. Acta, vol. 209, p. 719.
  194. Xu, X., Liu, Y., Wang, M., Zhu, C., Lu, T., Zhao, R., and Pan, L., Hierarchical hybrids with microporous carbon spheres decorated three-dimensional graphene frameworks for capacitive applications in supercapacitor and deionization, Electrochim. Acta, 2016, vol. 193, p. 88.
  195. Yasin, A.S., Mohamed, H.O., Mohamed, I.M.A., Mousa, H.M., and Barakat, A.M., Enhanced desalination performance of capacitive deionization using zirconium oxide nanoparticles-doped graphene oxide as a novel and effective electrode, Sep. Purif. Technol., 2016, vol. 171, p. 34.
  196. Wang, G., Dong, Q., Wu, T., Zhan, F., Zhou, M., and Qiu, J., Ultrasound-assisted preparation of electrospun carbon fiber/graphene electrodes for capacitive deionization: Importance and unique role of electrical conductivity, Carbon, 2016, vol. 103, p. 311.
  197. Ma, J., Wang, L., and Yu, F., Water-enhanced performance in capacitive deionization for desalination based on graphene gel as electrode material, Electrochim. Acta, 2018, vol. 263, p. 40.
  198. Li, H., Pan, L., Lu, T., Zhan, Y., Nie, C., and Sun, Z., Hierarchical hole-enhanced 3D graphene assembly for highly efficient capacitive deionization, Carbon, 2018, vol. 129, p. 95.
  199. Li, H., Pan, L., Lu, T., Zhan, Y., Nie, C., and Sun, Z., A comparative study on electrosorptive behavior of carbon nanotubes and graphene for capacitive deionization. J. Electroanal. Chem., 2011, vol. 653, p. 40.
  200. Rana, P., Mohan, N., and Rajagopal, C, Electrochemical removal of chromium from wastewater by using carbon aerogel electrodes, Water Res., 2004, vol. 38, p. 2811.
  201. Liu, Y., Chen, T., Lu, T., Sun, Z., Chua, D.H.C, and Pan, L., Nitrogen-doped porous carbon spheres for highly efficient capacitive deionization, Electrochim. Acta, 2015, vol. 158, p. 403.
  202. Liu, Y., Pan, L., Chen, T., Xu, X., Lu, T., Sun, Z., and Chua, D.H.C., Porous carbon spheres via microwave-assisted synthesis for capacitive deionization, Electrochim. Acta, vol. 151, p. 489.
  203. Huang, Z., Lu, L., Cai, Z., and Jason Ren, Z.J., Individual and competitive removal of heavy metals using capacitive deionization, J. Hazard. Mater., 2016, vol. 302, p. 323.
  204. Huang, S.-Y., Fan, C.-S., and Hou, C.-H., Electro-enhanced removal of copper ions from aqueous solutions by capacitive deionization, J. Hazard. Mater., 2014, vol. 278, p. 8.
  205. Fan, C.-S., Liou, S.Y.H., and Hou, S.-H., Capacitive deionization of arsenic-contaminated groundwater in a single-pass mode, Chemosphere, 2017, vol. 184, p. 924.
  206. Foo, K.Y. and Hameed, B.H., A short review of activated carbon assisted electrosorption process: An overview, current stage and future prospects, J. Hazard. Mater., 2009, vol. 170, p. 552.
  207. Litter, M.I., Morgada, M.E., and Bundschuh, J., Possible treatments for arsenic removal in Latin American waters for human consumption, Environ. Pollut. (Oxford, U.K.), 2010, vol. 158, p. 1105.
  208. Watson, K., Farré, M.J., and Knight, N., Strategies for the removal of halides from drinking water sources, and their applicability in disinfection by-product minimisation: A critical review, J. Environ. Manage., 2012, vol. 110, p. 276.
  209. Biesheuvel, P.M., Thermodynamic cycle analysis for capacitive deionization, J. Colloid Interface Sci., vol. 332, p. 258.
  210. Avraham, E., Noked, M., Bouhadana, Y., Soffer, A., and Aurbach, D., Limitations of charge efficiency in capacitive deionization processes III: The behavior of surface oxidized activated carbon electrodes, Electrochim. Acta, 2010, vol. 56, p. 441.
  211. He, F., Biesheuvel, P.M., Bazant, M.Z., and Hatton, T.A., Theory of water treatment by capacitive deionization with redox active porous electrodes, Water Res., vol. 132, p. 282.
  212. Hou, C.-H. and Huang, C.-Y., A comparative study of electrosorption selectivity of ions by activated carbon electrodes in capacitive deionization, Desalination, vol. 314, p. 124.
  213. Wu, T., Wang, G., Zhan, F., Dong, Q., Ren, Q., Wang, J., and Qiu, J., Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization, Water Res., 2016, vol. 93, p. 30.
  214. Yang, K.-L., Ying, T.-Y., Yiacoumi, S., Tsouris, C., and Vittoratos, E.S., Electrosorption of ions from aqueous solutions by carbon aerogel: An electrical double-layer model, Langmuir, 2001, p. 1961.
  215. Biesheuvel, P. M., Porada, S., Levi, M., and Bazant, M.Z., Attractive forces in microporous carbon electrodes for capacitive deionization, J. Solid State Electrochem, 2014, vol. 18, p. 1365.
  216. Danaskin, B., Petrii, O.A., and Tsirlina, G.A., Elektrokhimiya (Electrochemistry), Moscow: Khimiya, 2008.
  217. Diego, A.H., Oyarzun, I., Palko, J.Y., Hawks, S.A., Stadermann, M., and Santiago, J.G., Equilibria model for pH variations and ion adsorption in capacitive deionization electrodes, Water Res., 2017, vol. 122, p. 387.
  218. Zhang, C., He, D., Ma, Tang, W., and Waite, T.D., Faradaic reactions in capacitive deionization (CDI)—problems and possibilities: A review, Water Res., vol. 128, p. 314.
  219. Wang, L., Wang, M., Huang, Z.-H., Cui, T., Gui, Kang, F., Wang, K., and Wu, D., Capacitive deionization of NaCl solutions using carbon nanotube sponge electrodes, J. Mater. Chem., 2011, vol. 21, p. 18295.
  220. Li, Y., Xie, Q., Yan, W., Wang, Y., and Zhang, Z., Adsorption of K+ from an aqueous phase onto an activated carbon used as an electric double-layer capacitor electrode, Min. Sci. Technol, (Xuzhou, China), 2010, vol. 20, p. 551.
  221. Volfkovich, Yu.M., Mikhalin, A.A., and Rychagov, A.Yu., Surface conductivity measurements for porous carbon electrodes, Russ. J. Electrochem., 2013, vol. 49, p. 594.
  222. Zhang, H., Liang, P., Bian, Y., Sun, X., Ma, J., Jiang, and Huang, X., Enhancement of salt removal in capacitive deionization cell through periodically alternated oxidation of electrodes, Sep. Purif. Technol., 2018, vol. 194, p. 451.
  223. Xu, P., Drewes, J.E., Heil, D., and Wang, G., Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology, Water Res., 2008, vol. 42, p. 2605.
  224. Zhao, R., Porada, S., Biesheuvel, P.M., and van der Wal, A., Energy consumption in membrane capacitive deionization for different water recoveries and flow rates, and comparison with reverse osmosis, Desalination. 2013, vol. 330, p. 35.
  225. https://en.wikipedia.org/wiki/Capacitive_deionization.
  226. Al Marzooqi, F.A., Al Ghaferi, A.A., Saadat, I., and Hilal, N., Application of capacitive ceionisation in water desalination: A review, Desalination, 2014, vol. 342, p. 3.
  227. Virapan, R., Saravanane, V., and Murugaiyan, Treatment of reverse osmosis reject water from industries, Int. J. Appl. Environ. Sci., 2017, vol. 12, p. 489.
  228. Dietz, S., Design, service and manufacturing grantees and research conference, Proc. of the 2004 NSF. Birmingham, AL, January 2004.
  229. http://www.atlantiswater.com/.
  230. https://product.statnano.com/company/idropan%20 dell%E2%80%99orto%20depuratori%20srl%20water.
  231. https://www.desalination.biz/60421/d/EST-Water-and-Technologies-Company-Ltd.