Examples



mdbootstrap.com



 
Статья
2016

Electrochemical noise spectroscopy: Method of secondary Chebyshev spectrum


A. L. Klyuev A. L. Klyuev , A. D. Davydov A. D. Davydov , B. M. Grafov B. M. Grafov , Yu. A. Dobrovolskii Yu. A. Dobrovolskii , A. E. Ukshe A. E. Ukshe , E. A. Astaf’ev E. A. Astaf’ev
Российский электрохимический журнал
https://doi.org/10.1134/S1023193516100062
Abstract / Full Text

A new method of electrochemical noise diagnostics is presented: the method of the secondary Chebyshev spectrum based on the splitting of an individual spectral line in the primary Chebyshev spectrum with formation of a system of spectral lines of the secondary Chebyshev spectrum. Algorithm for calculation of the secondary Chebyshev spectrum is developed. The suggested method based on analysis of noises measured in a specific electrochemical system is tested. It is shown that the new method allows determining the differences in the state of the electrochemical system more reliably, than the method of primary Chebyshev noise spectra.

Author information
  • Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, 119071, Russia

    A. L. Klyuev, A. D. Davydov & B. M. Grafov

  • Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region, 132432, Russia

    Yu. A. Dobrovolskii, A. E. Ukshe & E. A. Astaf’ev

References
  1. Frumkin, A.N., Izbrannye trudy. Elektrodnye protsessy (Selected Works. Electrode Processes), Moscow Nauka, 1987.
  2. Timashev, S.F., Flikker-shumovaya spektroskopiya: Informatsiya v khaoticheskikh signalakh (Flicker Noise Spectroscopy: Information in Chaotic Signals), Moscow Fizmatlit, 2007.
  3. Roberge, P.R., Halliop, E., and Farrington, M.D., J. Power Sources, 1991, vol. 34, p. 233.
  4. Martinet, S., Durand, R., Ozil, P., Lebranc, P., and Blanchard, P., J. Power Sources, 1999, vol. 83, p. 93.
  5. Baert, D.H.J. and Vervaet, A.A.K., J. Power Sources, 2003, vol. 114, p. 357.
  6. Legros, B., Thivel, P.-X., Bultel, Y., and Nogueira, R.P., Electrochem. Commun., 2011, vol. 13, p. 1514.
  7. Martemianov, S., Adiutantov, N., Evdokimov, Y.K., Madier, L., Maillard, F., and Thomas, A., J. Solid State Electrochem., 2015, vol. 19, p. 2803.
  8. Grafov, B.M., Dobrovol’skii, Yu.A., Davydov, A.D., Ukshe, A.E., Klyuev, A.L., and Astaf’ev, E.A., Russ. J. Electrochem., 2015, vol. 51, p. 503.
  9. Nikiforov, A.F., Suslov, S.K., and Uvarov, V.B., Klassicheskie ortogonal’nye polinomy diskretnoi peremennoi (Classical Orthogonal Discrete–Variable Polynomials), Moscow Nauka, 1985.
  10. Gogin, N. and Hirvensalo, M., On the Generating Function of Discrete Chebyshev Polynomials. TUCS Technical Report, 2007, no. 819, p. 8.
  11. Astaf’ev, M.G., Kanevskii, L.S., and Grafov, B.M., Russ. J. Electrochem., 2007, vol. 43, p. 17.
  12. Mansfeld, F., Sun, Z., Hsu, C.H., and Nagiub, A., Corros. Sci., 2001, vol. 43, p. 341.
  13. Bertocci, U., Huet, F., Nogueira, R.P., and Rousseau, P., Corrosion, 2002, vol. 58, p. 337.
  14. Xia, D.H. and Behnamian, Y., Russ. J. Electrochem., 2015, vol. 51, p. 593.
  15. Oppenheim, A.V., Schafter, R.W., and Buck, J.R., Discrete–Time Signal Processing, Prentice Hall: Englewood Cliffs, 1999, Ch. 9.
  16. Aballe, A., Bethencourt, M., Botana, F.J., and Marcos, M., Electrochim. Acta, 1999, vol. 44, p. 4805.
  17. Welstead, S., Fractal and Wavelet Image Compression Techniques, Bellingham: SPIE Optical Engineering Press, 1999, Chs. 5 and 6.
  18. Klyuev, A.L., Grafov, B.M., Dobrovol’skii, Yu.A., Davydov, A.D., and Ukshe, A.E., Russ. J. Electrochem., 2015, vol. 51, p. 1180.