Examples



mdbootstrap.com



 
Статья
2021

Oxidation of Bisphenol A in a Hybrid Oxidative System, Based on the Combined Action of Acoustic and Low-Pressure Hydrodynamic Cavitation


D. G. AseevD. G. Aseev, A. A. BatoevaA. A. Batoeva
Российский журнал физической химии А
https://doi.org/10.1134/S0036024421100022
Abstract / Full Text

Kinetic patterns are found for the destruction of Bisphenol A (BPA) with the participation of highly reactive oxygen-containing radicals generated in situ in an aqueous medium under the action of acoustic cavitation in a megahertz range (1.7 MHz) and low pressure hydrodynamic cavitation (LPHC). It is shown that the considered oxidative systems can be ranked according to the efficiency and rate of destruction of BPA: LPHC/US/Fe2+/S2O\(_{8}^{{2 - }}\) > US/Fe2+/S2O\(_{8}^{{2 - }}\) > /Fe2+/S2O\(_{8}^{{2 - }}\) > LPHC/US/S2O\(_{8}^{{2 - }}\) > LPHC/US > LPHC. It is concluded that a synergistic effect reveals substantial activation of the oxidation of BPA under the combined action of high-frequency ultrasound and LPHC in an LPHC/US/Fe2+/S2O\(_{8}^{{2 - }}\) Fenton-like iron–persulfate system. It is found that full conversion of BPA in an LPHC/US/Fe2+/S2O\(_{8}^{{2 - }}\) hybrid oxidative system is achieved after 240 min of treatment, and the mineralization of the organic substance is 60%.

Author information
  • Baikal Institute of Nature Management, Siberian Branch, Russian Academy of Sciences, 670047, Ulan-Ude, RussiaD. G. Aseev & A. A. Batoeva
References
  1. R. Rezg, S. El-Fazaa, N. Gharbi, and B. Mornagui, Environ. Int. 64, 83 (2014). https://doi.org/10.1016/j.envint.2013.12.007
  2. M. Cheng, G. Zeng, D. Huang, et al., Chem. Eng. J. 284, 582 (2016). https://doi.org/10.1016/j.cej.2015.09.001
  3. G. Mark, A. Tauber, R. Laupert, et al., Ultrason. Sonochem. 5, 41 (1998). https://doi.org/10.1016/S1350-4177(98)00012-1
  4. A. H. Barati, M. Mokhtari-Dizaji, H. Mozdarani, et al., Iran. J. Radiat. Res. 3, 163 (2006). http://ijrr.com/article-1-188-en.html
  5. P. Sathishkumar, R. V. Mangalaraja, and S. Anandan, Renewable Sustainable Energy Rev. 55, 426 (2016). https://doi.org/10.1016/j.rser.2015.10.139
  6. D. M. Kirpalani and K. J. McQuinn, Ultrason. Sonochem. 13, 1 (2006). https://doi.org/10.1016/j.ultsonch.2005.01.001
  7. H. Ferkous, S. Merouani, and O. Hamdaoui, Ultrason. Sonochem. 34, 580 (2017). https://doi.org/10.1016/j.ultsonch.2016.06.027
  8. K. Thangavadivel, G. Owens, and K. Okitsu, RSC Adv. 3, 23370 (2013).
  9. H. Ghodbane and O. Hamdaoui, Ultrason. Sonochem. 16, 593 (2009). https://doi.org/10.1016/j.ultsonch.2008.11.006
  10. D. G. Aseev and A. A. Batoeva, Russ. J. Phys. Chem. A 89, 1585 (2015). https://doi.org/10.1134/S0036024415090046
  11. S. Gao, Y. Hemar, M. Ashokkumar, et al., Water Res. 60, 93 (2014). https://doi.org/10.1016/j.watres.2014.04.038
  12. I. Hua and J. Thompson, Water Res. 15, 3888 (2000). https://doi.org/10.1016/S0043-1354(00)00121-4
  13. M. Sivakumar and A. B. Pandit, Ultrason. Sonochem., No. 9, 123 (2002). https://doi.org/10.1016/S1350-4177(01)00122-5
  14. P. R. Gogate, I. Z. Shirgaonkar, M. Sivakumar, et al., J. AIChE, No. 47, 2526 (2001). https://doi.org/10.1002/aic.690471115
  15. K. S. Suslick, M. M. Mdleleni, and J. Y. T. Ries, J. Am. Chem. Soc. 119, 9303 (1997). https://doi.org/10.1021/ja972171i
  16. A. G. Chakinala, P. R. Gogate, A. E. Burgess, et al., Ultrason. Sonochem. 15, 49 (2008). https://doi.org/10.1016/j.ultsonch.2007.01.003
  17. A. G. Chakinala, P. R. Gogate, R. Chand, et al., Ultrason. Sonochem. 15, 164 (2008). https://doi.org/10.1016/j.ultsonch.2007.02.008
  18. H. Gallard and J. de Laat, Water Res. 34, 3107 (2000). https://doi.org/10.1016/S0043-1354(00)00074-9
  19. S. Guerra-Rodríguez, E. Rodríguez, D. N. Singh, et al., Water 10, 1828 (2018). https://doi.org/10.3390/w10121828
  20. D. G. Aseev, M. R. Sizykh, and A. A. Batoeva, Russ. J. Phys. Chem. A 91, 2331 (2017). https://doi.org/10.1134/S0036024417110024
  21. M. S. Khandarkhaeva, D. G. Aseev, M. R. Sizykh, and A. A. Batoeva, Russ. J. Phys. Chem. A 90, 2177 (2016). https://doi.org/10.1134/S003602441611011X
  22. S. L. Budaev, A. A. Batoeva, M. S. Khandarkhaeva, and D. G. Aseev, Russ. J. Phys. Chem. A 91, 604 (2017). https://doi.org/10.1134/S0036024417030049
  23. D. G. Aseev, A. A. Batoeva, and M. R. Sizykh, Russ. J. Phys. Chem. A 92, 1813 (2018). https://doi.org/10.1134/S0036024418090030
  24. D. A. Shiraz, A. Takdastan, and S. M. Borghei, J. Mol. Liq. 249, 463 (2017). https://doi.org/10.1016/j.molliq.2017.11.045
  25. M. Khandarkhaeva, A. Batoeva, M. Sizykh, et al., J. Environ. Manage. 249, 109348 (2019). https://doi.org/10.1016/j.jenvman.2019.109348
  26. C. Alexopoulou, A. Petala, Z. Frontistis, et al., Appl. Catal., B 244, 178 (2019). https://doi.org/10.1016/j.apcatb.2018.11.058
  27. I. Grčić, D. Vujević, and N. Koprivanac, Chem. Eng. J. 157, 35 (2010). https://doi.org/10.1016/j.cej.2009.10.042
  28. S. Tang, N. Li, D. Yuan, et al., Chemosphere 234, 658 (2019). https://doi.org/10.1016/j.chemosphere.2019.06.112