Examples



mdbootstrap.com



Abstract / Full Text

The fabrication and characterization of thin film humidity sensors based on orange dye (OD) and OD–graphene solid electrolytes cells were done in this paper. The 200 nm thick silver (Ag) and copper (Cu) electrodes were deposited on glass substrate by thermal evaporation. There was gap of 20 µm between the electrodes, where the 8 to 12 µm thick film of solid electrolyte was deposited. The pure OD and the OD–graphene composites with 40 and 60% (by weight) graphene were used as solid electrolytes. The dependences of the open-circuit voltage of the cells on humidity were measured in the humidity interval from 34 to 90% relative humidity (RH). It was found that with increase in humidity the open-circuit voltage of the cells increased. In the OD–graphene composite cells on increasing the concentration of graphene the open-circuit voltage increased accordingly.

Author information
  • Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, 21589, Jeddah, Saudi Arabia

    Muhammad Tariq Saeed Chani & Abdullah M. Asiri

  • Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, 21589, Jeddah, Saudi Arabia

    Muhammad Tariq Saeed Chani & Abdullah M. Asiri

  • GIK Institute of Engineering Sciences and Technology, District Swabi, KPK, 23640, Topi, Pakistan

    Khasan S. Karimov, Umair Asghar, S. Zameer Abbass, Rashid Ali & Nabila Nawaz

  • Center for Innovative Development of Science and New Technologies of Academy of Sciences of Tajikistan, 734025, Dushanbe, Tajikistan

    Khasan S. Karimov & Khakim M. Akhmedov

  • Institute of Advanced Materials, Nanjing Tech University, 211816, Nanjing, China

    Hong Meng

  • School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, 518055, Shenzhen, China

    Hong Meng

  • Department of Physics, International Islamic University, 44000, Islamabad, Pakistan

    Imran Murtaza

References
  1. Chani, M.T.S., Impedimetric sensing of temperature and humidity by using organic-inorganic nanocomposites composed of chitosan and a CuO–Fe3O4 nanopowder, Microchim. Acta, 2017, vol. 184, pp. 2349–2356.
  2. Chani, M.T.S., Karimov, K.S., Khalid, F.A., and Moiz, S.A., Polyaniline based impedance humidity sensors, Solid State Sci., 2013, vol. 18, pp. 78–82.
  3. Chani, M.T.S., Karimov, K.S., Khalid, F.A., Raza, K., Farooq, M.U., and Zafar, Q., Humidity sensors based on aluminum phthalocyanine chloride thin films, Phys. E, 2012, vol. 45, pp. 77–81.
  4. Chani, M.T.S., Karimov, K.S., Khan, S.B., and Asiri, A.M., Fabrication and investigation of cellulose acetate-copper oxide nano-composite based humidity sensors, Sens. Actuat. A, 2016, vol. 246, pp. 58–65.
  5. Karimov, K.S., Fatima, N., Sulaiman, K., Tahir, M.M., Ahmad, Z., and Mateen, A., Sensitivity enhancement of OD- and OD–CNT-based humidity sensors by high gravity thin film deposition technique, J. Semicond., 2015, vol. 36, p. 034005.
  6. Saleem, M., Karimov, K.S., Karieva, Z., and Mateen, A., Humidity sensing properties of CNT–OD–VETP nanocomposite films, Phys. E, 2010, vol. 43, pp. 28–32.
  7. Chani, M.T.S., Karimov, K.S., Khalid, F., Abbas, S., and Bhatty, M., Orange dye-polyaniline composite based impedance humidity sensors, Chin. Phys. B, 2013, vol. 22, p. 010701.
  8. Chani, M.T.S., Karimov, K.S., and Asiri, A.M., Fabrication and characterization of organic-inorganic (orange dye-vanadium oxide) composite based humidity sensors, Int. J. Electrochem. Sci., 2017, vol. 12, pp. 1434–1444.
  9. Moiz, S.A., Ahmed, M.M., and Karimov, K.S., Effects of temperature and humidity on electrical properties of organic semiconductor orange dye films deposited from solution, Jpn. J. Appl. Phys., 2005, vol. 44, p. 1199.
  10. Karimov, K., Ahmad, Z., Ali, R., Noor, A., Akmal, M., Najeeb, M., and Shakoor, R., Fabrication and characterization of the organic rectifying junctions by electrolysis, Appl. Phys. A, 2017, vol. 123, p. 546.
  11. Karimov, K.S., Saleem, M., Akhmedov, K.M., Ali, T., and Bashir, M.M., Photo-thermo electric effect in Zn/orange dye aqueous solution/carbon cell, Kuwait J. Sci., 2017, vol. 44, no. 1.
  12. Ahmad, Z., Karimov, K.S., Touati, F., Ajmal, M.S., Ali, T., Kayani, S.H., Kabutov, K., Shakoor, R., and Al-Thani, N., n-InAs based photo-thermo-electrochemical cells for conversion of solar to electrical energy, J. Electroanal. Chem., 2016, vol. 775, pp. 267–272.
  13. Ahmed, M., Karimov, K.S., and Moiz, S., Photoelectric behavior of n-GaAs/orange dye, vinyl-ethynyl-trimethyl-piperidole/conductive glass sensor, Thin Solid Films, 2008, vol. 516, pp. 7822–7827.
  14. Ali, T., Karimov, K.S., Akhmedov, K.M., Kabutov, K., and Farooq, A., Thermo photo-electrochemical effect in n-InP/aqueous solution of orange dye/C cell, Electron. Mater. Lett., 2015, vol. 11, pp. 259–265.
  15. Chani, M.T.S., Karimov, K.S., Khan, S.B., and Asiri, A.M., Fabrication and investigation of flexible photo-thermo electrochemical cells based on Cu/orange dye aqueous solution/Cu, Int. J. Electrochem. Sci., 2015, vol. 10, pp. 5694–5701.
  16. Karimov, K., Saleem, M., Bashir, M.M., and Ali, T., Temperature sensitivity of Zn/orange dye aqueous solution/carbon cell, Optoelectron. Adv. Mater. Rapid. Commun., 2016, vol. 10, pp. 205–208.
  17. Saleem, M., Sayyad, M., Kartmov, K., and Kabutov, K., Photoelectric studies of n-InP/orange dye/ITO cell, J. Optoelectron. Adv. Mater., 2016, vol. 18, pp. 123–129.
  18. Nilsson, D., Kugler, T., Svensson, P.-O., and Berggren, M., An all-organic sensor-transistor based on a novel electrochemical transducer concept printed electrochemical sensors on paper, Sens. Actuat. B, 2002, vol. 86, pp. 193–197.
  19. Mead, M.I., Popoola, O., Stewart, G., Landshoff, P., Calleja, M., Hayes, M., Baldovi, J., McLeod, M., Hodgson, T., and Dicks, J., The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks, Atmos. Environ., 2013, vol. 70, pp. 186–203.
  20. Shao, Y., Wang, J., Wu, H., Liu, J., Aksay, I.A., and Lin, Y., Graphene based electrochemical sensors and biosensors: a review, Electroanalysis, 2010, vol. 22, pp. 1027–1036.
  21. Nilsson, D., Chen, M., Kugler, T., Remonen, T., Armgarth, M., and Berggren, M., Bi-stable and dynamic current modulation in electrochemical organic transistors, Adv. Mater., 2002, vol. 14, pp. 51–54.
  22. Karimov, K.S., Sayyad, M.H., Ali, M., Khan, M.N., Moiz, S.A., Khan, K.B., Farah, H., and Karieva, Z.M., Electrochemical properties of Zn/orange dye aqueous solution/carbon cell, J. Power Sources, 2006, vol. 155, pp. 475–477.
  23. Chani, M.T.S., Asiri, A.M., Karimov, K.S., Bashir, M., Khan, S.B., and Rahman, M.M., Carbon nanotubes-silicon nanocomposites based resistive temperature sensors, Int. J. Electrochem. Sci., 2015, vol. 10, pp. 3784–3791.
  24. Chani, M.T.S., Asiri, A.M., Karimov, K.S., Niaz, A.K., Khan, S.B., and Alamry, K.A., Aluminium phthalocyanine chloride thin films for temperature sensing, Chin. Phys. B, 2013, vol. 22, p. 118101.
  25. Chani, M.T.S., Karimov, K.S., Asiri, A.M., Ahmed, N., Bashir, M.M., Khan, S.B., Rub, M.A., and Azum, N., Temperature gradient measurements by using thermoelectric effect in CNTs–silicone adhesive composite, PLoS ONE, 2014, vol. 9, p. e95287.
  26. Chani, M.T.S., Karimov, K.S., Khan, S.B., Asiri, A.M., Saleem, M., and Bashir, M.M., Fe2O3–silicone adhesive composite based humidity sensors, Optoelectron. Adv. Mater. Rapid Commun., 2013, vol. 7, pp. 861–865.
  27. Chani, M.T.S., Karimov, K.S., Nabi, J.-u., Hashim, M., Kiran, I., and Asiri, A.M., Design, fabrication and investigation of semitransparent thermoelectric cells based on graphene, Int. J. Electrochem. Sci., 2018, vol. 13, pp. 11777–11786.
  28. Chani, M.T.S., Khan, S.B., Asiri, A.M., Karimov, K.S., and Rub, M.A., Photo-thermoelectric cells based on pristine α-Al2O3 co-doped CdO, CNTs and their single and bi-layer composites with silicone adhesive, J. Taiwan Inst. Chem. Eng., 2015, vol. 52, pp. 93–99.
  29. Minnich, A., Dresselhaus, M., Ren, Z., and Chen, G., Bulk nanostructured thermoelectric materials: current research and future prospects, Energy Environ. Sci., 2009, vol. 2, pp. 466–479.
  30. Hibbert, D.B., Introduction to Electrochemistry, Springer, 1993.
  31. Christensen, P. and Hamnet, A., Techniques and Mechanisms in Electrochemistry, Springer Sci. Business Media, 2007.
  32. Kato, Y.Y., Hori, S., Saito, T., Suzuki, K., Hirayama, M., Mitsui, A., Yonemura, M., Iba, H., and Kanno, R., Nat. Energy, 2016, vol. 1, p. 16030.
  33. Hu, Y.-S., Batteries: getting solid, Nat. Energy, 2016, vol. 1, p. 16042.
  34. Wachsman, E.D., Hu, L., and Thangadurai, V., US Patent Application no. US20140287305, 2014.
  35. Erika, O. and Osada, N., US Patent Application no. US20170040636, 2017.
  36. Zimmerman, M.A. and Leising, R., US Patent Application no. US20180151914, 2018.
  37. Lee, S.-H., Tracy, C.E., Pitts, J.R., and Liu, P., US Patent Application no. US20100285372, 2015.
  38. Scherer, G.W., Structure and properties of gels, Cem. Concr. Res., 1999, vol. 29, pp. 1149–1157.
  39. Brinker, C.J. and Scherer, G.W., Sol–Gel Science: the Physics and Chemistry of Sol–Gel Processing, Acad. Press, 2013.