The Effect of Polytetrafluoroethylene Content in Porous Carbon Materials on Their Structural and Electrochemical Characteristics by the Example of Oxygen Reduction to Hydrogen Peroxide

G. A. Kolyagin G. A. Kolyagin , V. L. Kornienko V. L. Kornienko
Российский электрохимический журнал
Abstract / Full Text

The results on how polytetrafluoroethylene (PTFE) affects the structural and electrochemical characteristics of porous composite materials based on furnace black СН600, acetylene black А437E, and mesostructured carbon СМК-3 are analyzed. Carbon materials differ by their preparation method, texture, wettability with respect to aqueous electrolyte, and specific surface area. The characteristics of the texture of original carbon materials and their mixtures with PTFE (5–70 wt %) are determined by the low-temperature adsorption of nitrogen. The composition materials are used as the electrode material in the working layer of gas-diffusion electrodes (GDE). The effect of PTFE on the volume and size of pores, the surface area of carbon materials, the volume of pores filled with electrolyte, the electric double layer capacitance, and the parameters of Н2О2 electrogeneration from О2 in aqueous sulfuric acid solutions at the current density of 150 mA/cm2 is described. It is shown that the effect of the PTFE concentration in composite materials on their characteristics depends on the properties of carbon materials. All carbon materials listed can be used in GDE for the reduction of О2 to Н2О2. For GDE with the optimal ratio of PTFE to the carbon material, the 5 h electrolysis produces the Н2О2 solution with the concentration of 1.9–2.4 М at 65–87% current efficiency.

Author information
  • Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences, Federal Research Institute “Krasnoyarsk Research Center,” Siberian Branch, Russian Academy of Sciences, 660036, Krasnoyarsk, Russia

    G. A. Kolyagin & V. L. Kornienko

  1. Bidault, F., Brett, D.J.L., Middletonc, P.H., and Brandon, N.P., Review of gas diffusion cathodes for alkaline fuel cells, J. Power Sources, 2009, vol. 187, p. 39.
  2. Volfkovich, Yu.M., Sosenkin, V.E., and Nikol’skaya, N.F., Porous structure of the catalyst layers of electrodes in a proton-exchange membrane fuel cell: A stage-by-stage study, Russ. J. Electrochem., 2010, vol. 46, p. 336.
  3. Volfkovich, Yu.M., Sosenkin, V.E., and Bagotsky, V.S., Structural and wetting properties of fuel cell components, J. Power Sources, 2010, vol. 195, p. 5429.
  4. Chi, B., Hou, S., Liu, G., Deng, Y., Zeng, J., Song, H., Liao, S., and Ren, J., Tuning hydrophobic-hydrophilic balance of cathode catalyst layer to improve cell performance of proton exchange membrane fuel cell (PEMFC) by mixing polytetrafluoroethylene (PTFE), Electrochim. Acta, 2018, vol. 277, p. 110.
  5. Beck, F., Dolata, M., Grivei, E., and Probst, N., Electrochemical supercapacitors based on industrial carbon blacks in aqueous H2SO4, J. Appl. Electrochem., 2001, vol. 31, p. 845.
  6. Kornienko, V.L., Kolyagin, G.A., and Saltykov, Yu.V., Elektrosintez v gidrofobizirovannykh elektrodakh (Electrosynthesis in Hydrophobized Electrodes), Tomilov A.P., Ed., Novosibirsk: SO RAN, 2011. http://www.rfbr.ru/rffi/ru/books/o_1781580#1.
  7. Zhou, W., Meng, X., Gao, and Alshawabkeh, A.N., Hydrogen peroxide generation from O2 electroreduction for environmental remediation: A state-of-the-art review, Chemosphere, 2019, vol. 225, p. 588.
  8. Casado, J., Towards industrial implementation of electro-Fenton and derived technologies for wastewater treatment: A review, J. Environ. Chem. Eng., 2019, vol. 7, p. 102823.
  9. Pliegoa, G., Zazoa, J. A., Garcia-Muñoza, P., Munoza, M., Casasa, J.A., and Rodriguezn, J.J., Trends in the intensification of the Fenton process for wastewater treatment—An overview, Crit. Rev. Environ. Sci. Technol., 2015, vol. 45, p. 2611.
  10. Xia-Chun, Lu and Xiaoqun, Wu, US Patent 0207923, 2007.
  11. Suzuki, T., Tanaka, H., Hayase, M., Tsushima, S., and Hirai, S., Investigation of porous structure formation of catalyst layers for proton exchange membrane fuel cells and their effect on cell performance, Int. J. Hydrogen Energy, 2016, vol. 41, p. 20326.
  12. Soboleva, T., Zhao, X., Malek, K., Xie, Z., Navessin, T., and Holdcroft, S., On the micro-, meso-, and macroporous structures of polymer electrolyte membrane fuel cell catalyst layers, ACS Appl. Mater. Interfaces, 2010, vol. 2, p. 375.
  13. Kornienko, V.L., Kolyagin, G.A., Kornienko, G.V., Parfenov, V.A., and Ponomarenko, I.V., Electrosynthesis of H2O2 from O2 in a gas-diffusion electrode based on mesostructured carbon CMK-3, Russ. J. Electrochem., 2018, vol. 54, p. 258.
  14. Kornienko, V.L., Kolyagin, G.A., Kornienko, G.V., Parfenov, V.A., and Petin, A.A., Electrosynthesis of H2O2 from O2 in gas diffusion electrodes based on black CH600, Russ. J. Electrochem., 2017, vol. 53, p. 1307.
  15. Kornienko, V.L., Kolyagin, G.A., Kornienko, G.V., Parfenov, V.A., and Ashihin, A.S., Study of texture effect of gas diffusion electrodes based on A437-E acetylene black on the efficiency of electrosynthesis of H2O2 from O2, Khim. Interesakh Ustoich. Razvit., 2017, no. 5, C. 519.
  16. Budevski, B.E., Iliev, I.D., Kaisheva, A.R., Gamburzev, S.S., and Vakanova, E.B., USSR Inventor’s Certificate no. 500557, 1976; US Patent 4031033, 1977.
  17. Ganz, S.N. and Parkhomenko, V.D., Antifriktsionnye khimichaski stoikie materialy v mashinostroenii (Antifriction Chemically Resistant Materials in Mechanical Engineering), Moscow: Mashinostroenie, 1965.
  18. Kolyagin, G.A. and Kornienko, V.L., Impregnation of acetylene black electrodes with a polytetrafluoroethylene binder with an aqueous solution and evaluation of its specific double layer capacity, Russ. J. Electrochem., 2017, vol. 53, p. 96.
  19. Gode, P., Jaouen, F., Lindbergh, G., Lundblad, A., and Sundholm, G., Influence of the composition on the structure and electrochemical characteristics of the PEFC cathode, Electrochim. Acta, 2003, vol. 48, p. 4175.