Examples



mdbootstrap.com



 
Статья
2021

Conditions of the Formation and Properties of an Adsorbent Obtained from Aluminum Oxide Modified with Polyimide


E. Yu. YakovlevaE. Yu. Yakovleva, E. E. BaranovskayaE. E. Baranovskaya
Российский журнал физической химии А
https://doi.org/10.1134/S0036024421080306
Abstract / Full Text

The change in textural and chromatographic properties of separation layers obtained from aluminum oxide modified with polyimide is studied via low-temperature nitrogen adsorption, high-resolution transmission electron microscopy, and gas chromatography. The specific surface of γ-Al2O3 adsorbent + 10 wt % polyimide falls from 228.9 to 190.4 m2/g with a slight increase in pore size from 83.6 to 86.5 Å upon thermal aging at 250 to 450°C in an inert gas flow. The uniform arrangement of carbon on the surface layers and almost Gaussian shape of the peaks of the components separated indicate a homogeneous adsorbent surface forms. This is achieved after removing active sites of sodium, iron, and titanium in the initial γ-Al2O3, modifying its surface with polyimide, and thermal aging at 450°C. Carbon monoxide and carbon dioxide are selectively eluted from the associated permanent gases and hydrocarbons.

Author information
  • Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, RussiaE. Yu. Yakovleva & E. E. Baranovskaya
  • Novosibirsk State University, 630090, Novosibirsk, RussiaE. Yu. Yakovleva & E. E. Baranovskaya
References
  1. K. K. Youn, B. P. Ho, and M. L. Young, J. Membr. Sci. 255, 265 (2005). https://doi.org/10.1016/j.memsci.2005.02.002
  2. N. Ohta, Y. Nishi, T. Morishita, et al., Carbon (N.Y.) 46, 1350 (2008). https://doi.org/10.1016/j.carbon.2008.05.019
  3. P. S. Tin, Y. Xiao, and T. S. Chung, Sep. Purif. Rev. 35, 285 (2006). https://doi.org/10.1080/15422110601003481
  4. G. D. Chukin, The Structure of Aluminum Oxide and Hydrodesulfurization Catalysts. Reaction Mechanisms (Moscow, 2010) [in Russian].
  5. V. G. Berezkin, V. P. Pakhomov, and K. I. Sakodynskii, Solid Supports in Gas Chromatography (Khimiya, Moscow, 1975) [in Russian].
  6. I. K. Shundrina, T. A. Vaganova, S. Z. Kusov, et al., J. Fluorine Chem. 132, 207 (2011). https://doi.org/10.1016/j.jfluchem.2011.01.008
  7. E. Yu. Yakovleva, I. K. Shundrina, and T. A. Vaganova, J. Anal. Chem. 68, 1044 (2013). https://doi.org/10.1134/S1061934813100110
  8. E. Y. Yakovleva, I. K. Shundrina, E. Y. Gerasimov, and T. A. Vaganova, Russ. J. Phys. Chem. A 88, 521 (2014). https://doi.org/10.1134/S0036024414030297
  9. E. Y. Yakovleva, I. K. Shundrina, and E. Y. Gerasimov, Russ. J. Phys. Chem. A 91, 1797 (2017). https://doi.org/10.1134/S0036024417090321
  10. E. Y. Yakovleva and I. K. Shundrina, Adv. Mater. Technol., 049 (2017). https://doi.org/10.17277/amt.2017.04.pp.049-055
  11. E. Yu. Yakovleva, E. E. Baranovskaya, I. K. Shundrina, and E. Yu. Gerasimov, Russ. J. Phys. Chem. A 94, 1476 (2020). https://doi.org/10.1134/S0036024420070328