Examples



mdbootstrap.com



 
Статья
2021

Synthesis of Lithium Sulfide by Carbothermal Reduction of Lithium Sulfate with Petroleum Coke


E. V. KarasevaE. V. Karaseva, L. V. SheinaL. V. Sheina, V. S. KolosnitsynV. S. Kolosnitsyn
Российский журнал прикладной химии
https://doi.org/10.1134/S1070427221010018
Abstract / Full Text

The effect of the conditions of carbothermal reduction of lithium sulfate with petroleum coke on the composition of the resulting products and conversion of lithium sulfate was investigated. It was found that the optimal conditions for the carbothermal reduction of lithium sulfate with petroleum coke are a temperature of 750°C and a time of 1–2 h. The conversion of lithium sulfate is determined by the method of preparing the reaction mixture and is 80–90 mol %.

Author information
  • Ufa Institute of Chemistry, UFRC RAS, 450054, Ufa, RussiaE. V. Karaseva, L. V. Sheina & V. S. Kolosnitsyn
References
  1. Su, D., Zhou, D., Wang, C., and Wang, G., Adv. Funct. Mater., 2018, vol. 28, no. 38, ID 1800154. https://doi.org/10.1002/adfm.201870273
  2. Lithium Sulphide Battery and Method of Producing the Same. US Patent 8 361 652 B2 (publ. 2013).
  3. Lidin, R.A., Molochko, V.A., and Andreeva, L.L., Khimicheskie svoistva neorganicheskikh veshchestv (Chemical Properties of Inorganic Substances), Moscow: Khimiya, 2000.
  4. Lithium containing transition metal sulfide compounds. US Patent 2011/0200882 Al (publ. 2011).
  5. Yang, Z., Guo, J., Das, S.K., Yu, Y., Zhou, Z., Abruna, H.D., and Archer, L.A., J. Mater. Chem. A, 2013, vol. 1, no. 4, pp. 1433–1440. https://doi.org/10.1039/C2TA00779G
  6. Kohl, M., Brückner, J., Bauer, I., Althues, H., and Kaskel, S., J. Mater. Chem. A, 2015, vol. 3, pp. 16307–16312. https://doi.org/10.1039/C5TA04504E
  7. Liu, J., Nara, H., Yokoshima, T., Momma, T., and Osaka, T., Electrochim. Acta, 2015, vol. 183, pp. 70–77. https://doi.org/10.1016/j.electacta.2015.07.116
  8. Li, Z., Zhang, S., Zhang, C., Ueno, K., Yasuda, T., Tatara, R., Dokko, K., Watanabe, M., Nanoscale, 2015, vol. 7, pp. 14385–14392. https://doi.org/10.1039/C5NR03201F
  9. Wang, D.H., Xie, D., Yang, T., Zhong, Y., Wang, X.L., Xia, X.H., Gu, C.D., Tu, J.P., J. Power Sources, 2016, vol. 331, pp. 475–480. https://doi.org/10.1016/j.jpowsour.2016.09.033
  10. Wang, D.H., Xia, X.H., Xie, D., Niu, X.Q., Ge, X., Gu, C.D., Wang, X.L., and Tu, J.P., J. Power Sources, 2015, vol. 299, pp. 293–300. https://doi.org/10.1016/j.jpowsour.2015.09.002
  11. Ye, F., Noh, H., Lee, J., Lee, H., and Kim, H.-T., J. Mater. Chem. A, 2018, vol. 6, no. 15, pp. 6617–6624. https://doi.org/10.1039/C8TA00515J
  12. Peng, Y., Zhang, Y., Wen, Z., Wang, Y., Chen, Z., Hwang, B.-J., and Zhao, J. , Chem. Eng. J., 2018, vol. 346, pp. 57–64. https://doi.org/10.1016/j.cej.2018.04.049
  13. Chen, Y., Lu, S., Zhou, J., Qin, W., and Wu, X., Adv. Funct. Mater., 2017, vol. 27, ID 1700987. https://doi.org/10.1002/adfm.201700987
  14. Zhang, J., Shi, Y., Ding, Y., Peng, L., Zhang, W., and Yu, G., Adv. Energy Mater., 2017, vol. 7, ID 1602876. https://doi.org/10.1002/aenm.201602876
  15. Al'myashev, V.I. and Gusarov, V.V., Termicheskie metody analiza (Thermal Analysis Methods), St. Petersburg: SPbGETU, 1999.
  16. Kolosnitsyn, V.S., Kuz'mina, E.V., Sheina, L.V., Karaseva, E.V., Yakovleva, A.A., Izv. vuzov. Khimiya Khim. Tekhnologiya, 2012, vol. 55, no. 3, pp. 22–26.
  17. Takeuchi, T., Kageyama, H., Nakanishi, K., Tabuchi, M., Sakaebe, H., Ohta, T., Senoh, H., Sakai, T., and Tatsumi, K., J. Electrochem. Soc., 2010, vol. 157, no. 11, pp. A1196–A1201. https://doi.org/10.1149/1.3486083
  18. Takeuchi, T., Sakaebe, H., Kageyama, H., Senoh, H., Sakai, T., and Tatsumi, K., J. Power Sources, 2010, vol. 195, no. 9, pp. 2928–2934. https://doi.org/10.1016/j.jpowsour.2009.11.011
  19. Shunxin, J., Xiuping, C., Fan, P., Zhao, Z., and Chen, F., Zhong, M., Int. J. Electrochem. Sci., 2018, vol. 13, no. 4, pp. 3407–3419. https://doi.org/10.20964/2018.04.44
  20. Kato, Y., ISIJ Int., 2012, vol. 52, no. 8, pp. 1433–1438. https://doi.org/10.2355/isijinternational.52.1433
  21. Turkuova, K., Slizovskiy, D., and Tangstad, M., ISIJ Int., 2014, vol. 54, no. 6, pp. 1204–1208. https://doi.org/10.2355/isijinternational.54.1204
  22. Blokhina, I.A., Ivanov, V.V., Kirik, S.D., and Nikolaeva, N.S., Inorg. Mater., 2016, vol. 52, no. 6, pp. 550–557. https://doi.org/10.1134/S0020168516060017 
  23. Krutskii, Yu.L., Maksimovskii, E.A., Krutskaya, T.M., Popov, M.V., Netskina, O.V., Nikulina, A.A., Cherkasova, N.Yu., and Kvashina, T.S., Russ. J. Appl. Chem., 2017, vol. 90, no. 9, pp. 1379–1385. https://doi.org/10.1134/S1070427217090014