The Effect of Microstructure on the Corrosion Resistance of Pipe Steel 20 under Conditions of Carbon Dioxide Corrosion

V. K. Laurinavichyute V. K. Laurinavichyute , T. V. Shibaeva T. V. Shibaeva , L. V. Pugolovkin L. V. Pugolovkin , M. V. Zheleznyi M. V. Zheleznyi , I. Yu. Pyshmintsev I. Yu. Pyshmintsev , A. N. Mal’tseva A. N. Mal’tseva , F. D. Chepik F. D. Chepik
Российский электрохимический журнал
Abstract / Full Text

The corrosion stability of pipeline steel 20 in the as received state (r) and also after quenching (q), tempering (t), and normalization (n) is studied in acetate buffers saturated with CO2 and containing 0–0.85 M NaCl. The polarization measurements and open-circuit tests showed that the corrosion resistance decreases in the following series: t ~ n > q > r. The lower corrosion rates for t and n samples are associated with the lower content of pearlite and its uniform distribution throughout the microstructure. It is shown that the preferential dissolution of ferrite during corrosion is accompanied by the pearlite component exposure and the increase in cathodic currents, which favors acceleration of corrosion.

Author information
  • Moscow State University, Faculty of Chemistry, Moscow, Russia

    V. K. Laurinavichyute & L. V. Pugolovkin

  • Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, Russia

    T. V. Shibaeva & M. V. Zheleznyi

  • Russian Research Institute of the Tube and Pipe Industries, Chelyabinsk, Russia

    I. Yu. Pyshmintsev, A. N. Mal’tseva & F. D. Chepik

  1. Mishra, B., Al-Hassan, S., Olson, D.L., and Salama, M.M., Development of a predictive model for activation controlled corrosion of steel in solutions containing carbon dioxide, Corrosion, 1997, vol. 53, p. 852. https://doi.org/10.5006/1.3290270
  2. Kahyarian, A., Singer, M., and Nesic, S., Modeling of uniform CO2 corrosion of mild steel in gas transportation system. A review, J. Nat. Gas Sci. Eng., 2016, vol. 29, p. 530. https://doi.org/10.1016/j.jngse.2015.12.052
  3. Kermani, M.B. and Morshed, A., Carbon dioxide corrosion in oil and gas production—A compendium, Corrosion, 2003, vol. 59, p. 659. https://doi.org/10.5006/1.3277596
  4. Kashkovskii, R.V. and Ibatullin, K.A., Scientific-and-technical aspects of corrosion destruction of field metal facilities in presence of carbon dioxide. Review, Korroz.: Mater., Zashch., 2016, vol. 11, p. 1.
  5. Moiseeva, L.S., Carbon dioxide corrosion of oil and gas field equipment, Prot. Met., 2005, vol. 41, p. 76.
  6. Nordsveen, M., Nešić, S., Nyborg, R., and Stangeland, A., A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films–part 1: theory and verification, Corr. Sci., 2003, vol. 59, p. 443. https://doi.org/10.5006/1.3277576
  7. Nešić, S., Nordsveen, M., Nyborg, R., and Stangeland, A., A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films–part 2: a numerical experiment, Corr. Sci., 2003, vol. 59, p. 489. https://doi.org/10.5006/1.3277579
  8. Nešić, S. and Lee, K.-L.J., A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films–part 3: Film growth model, Corr. Sci., 2003, vol. 59, p. 616. https://doi.org/10.5006/1.3277592
  9. Nesic, S., Postlethwaite, J., and Olsen, S., An electrochemical model for prediction of corrosion of mild steel in aqueous carbon dioxide solutions, Corr. Sci., 1996, vol. 52, p. 280. https://doi.org/10.5006/1.3293640
  10. Hurlen, T., Gunvaldsen, S., Tunold, R., Blaker, F., and Lunde, P.G., Effects of carbon dioxide on reactions at iron electrodes in aqueous salt solutions, J. Electroanal. Chem., 1984, vol. 180, p. 511. https://doi.org/10.1016/0368-1874(84)83604-7
  11. Wieckowski, A., Ghali, E., Szklarczyk, M., and Sobkowski, J., The behavior of iron electrode in CO2-saturated neutral electrolyte. I. Electrochemical study, Electrochim. Acta, 1983, vol. 28, p. 1619. https://doi.org/10.1016/0013-4686(83)85226-8
  12. Linter, B.R. and Burstein, G.T., Reactions of pipeline steels in carbon dioxide solutions, Corr. Sci., 1991, vol. 41, p. 117. https://doi.org/10.1016/S0010-938X(98)00104-8
  13. Lopez, D.A., Perez, T., and Simison, S.N., The influence of microstructure and chemical composition of carbon and low alloy steels in CO2 corrosion. A state-of-the-art appraisal, Mater. Design, 2003, vol. 24, p. 561. https://doi.org/10.1016/S0261-3069(03)00158-4
  14. Ochoa, N., Vega, C., Pebere, N., Lacaze, J., and Brito, J.L., CO2 corrosion resistance of carbon steel in relation with microstructure changes, Mater. Chem. Phys., 2015, vol. 156, p. 198. https://doi.org/10.1016/j.matchemphys.2015.02.047
  15. Kahyarian, A., Brown, B., and Nesic, S., Electrochemistry of CO2 corrosion of mild steel: Effect of CO2 on iron dissolution reaction, Corr. Sci., 2017, vol. 129, p. 146. https://doi.org/10.1016/j.corsci.2017.10.005
  16. Mishra, B., Al-Hassan, S., Olson, D.L., and Salama, M.M., Effect of microstructure on corrosion of steels in aqueous solutions containing carbon dioxide, Corrosion, 1998, vol. 54, p. 480. https://doi.org/10.5006/1.3284876
  17. Xu, L., Wang, B., Zhu, J., Li, W., and Zheng, Z., Effect of Cr content on the corrosion performance of low-Cr alloy steel in a CO2 environment, Appl. Surf. Sci., 2016, vol. 379, p. 39. https://doi.org/10.1016/j.apsusc.2016.04.049
  18. Kermani, M.D., Gonzaґles, J.C., Linne, C., Dougan, M., and Cochrane, R., Development of low carbon Cr–Mo steels with exceptional corrosion resistance for oilfield applications. Corrosion, 2001, Paper 01065, Houston, TX: NACE International, 2001.
  19. Eliyan, F.F., Mohammadi, F., and Alfantazi, A., An electrochemical investigation on the effect of the chloride content on CO2 corrosion of API-X100 steel, Corr. Sci., 2012, vol. 64, p. 37. https://doi.org/10.1016/j.corsci.2012.06.032
  20. Liu, Q.Y., Mao, L.J., and Zhou, S.W., Effects of chloride content on CO2 corrosion of carbon steel in simulated oil and gas well environments, Corr. Sci., 2014, vol. 84, p. 165. https://doi.org/10.1016/j.corsci.2014.03.025
  21. Videm, K. and Koren, A.M., Corrosion, passivity, and pitting of carbon steel in aqueous solutions of \({\text{HCO}}_{3}^{ - },\) CO2, and Cl, Corrosion, 1993, vol. 49, p. 746. https://doi.org/10.5006/1.331612710.5006/1.3316127
  22. Moiseeva, L.S. and Rashevskaya, N.S., Effect of pH value on corrosion behavior of steel in CO2-containing aqueous media. Russ. J. Appl. Chem., 2002, vol. 75, no. 10, p. 1625.
  23. Wright, R.F., Brand, E.R., Ziomek-Moroz, M., Tylczak, J.H., and Ohodnicki, P.R., Effect of \({\text{HCO}}_{3}^{ - }\) on electrochemical kinetics of carbon steel corrosion in CO2-saturated brines, Electrochim. Acta, 2018, vol. 290, p. 626. https://doi.org/10.1016/j.electacta.2018.09.11410.1016/j.electacta.2018.09.114
  24. Han, J., Zhang, J., and Carey, J.W., Effect of bicarbonate on corrosion of carbon steel in CO2 saturated brines, Int. J. Greenh. Gas Contr., 2011, vol. 5, p. 1680. https://doi.org/10.1016/j.ijggc.2011.08.003
  25. Shibaeva, T.V., Laurinavichyute, V.K., Tsirlina, G.A., Arsenkin, A.M., and Grigorovich, K.V., The effect of microstructure and non-metallic inclusions on corrosion behavior of low carbon steel in chloride containing solutions, Corr. Sci., 2014, vol. 80, p. 299. https://doi.org/10.1016/j.corsci.2013.11.038
  26. Taylor, E.W., The Examination of Waters and Water Supplies, London: Churchikk, 1958.
  27. Heusler, K.E., Der einfluss der wasserstoffionenkonzentration auf das elektrochemische verhalten des aktiven eisens in sauren losungen, Ber. Bunsen-Ges.: Phys. Chem., 1958, vol. 62, p. 582. https://doi.org/10.1002/bbpc.19580620510
  28. Bockris, J.O’M., Drazic, D., and Despic, A.R., The electrode kinetics of the deposition and dissolution of iron, Electrochim. Acta, 1961, vol. 4, p. 325. https://doi.org/10.1016/0013-4686(61)80026-1
  29. Nesic, S., Thevenot, N., Crolet, J.-L., and Drazic, D.M., Electrochemical properties of iron dissolution in the presence of CO 2 . Basics revisited, NACE Corros., 1996, p. 3.
  30. Fang, H., Brown, B., and Nešic, S., Sodium chloride concentration effects on general CO2 corrosion mechanisms, Corrosion, 2013, vol. 69, p. 297. https://doi.org/10.5006/0222
  31. Eliyan, F.F. and Alfantazi, A., On the theory of CO2 corrosion reactions – Investigating their interrelation with the corrosion products and API-X100 steel microstructure, Corr. Sci., 2014, vol. 85, p. 380. https://doi.org/10.1016/j.corsci.2014.04.055
  32. Kahyarian, A., Brown, B., and Nešic, S., Technical note: electrochemistry of CO2 corrosion of mild steel: effect of CO2 on cathodic currents, Corrosion, 2018, vol. 74, p. 851. https://doi.org/10.5006/2792
  33. Stern, M. and Geary, A.L., Electrochemical polarization I. A theoretical analysis of the shape of polarization curves, J. Electrochem. Soc., 1957, vol. 104, p. 56. https://doi.org/10.1149/1.2428496
  34. Dugstad, A., Hemmer, H., and Seiersten, M., Effect of steel microstructure on corrosion rate and protective iron carbonate film formation, Corrosion, 2001, vol. 57, p. 369. https://doi.org/10.5006/1.3290361
  35. Yudin, P.E., Pugacheva, T.M., Kondrateva, L.A., and Bogatov, M.V., Investigation of the influence of the microstructure on the corrosion rate of steel 20 in a carbon dioxide environment. Met. Sci. Heat Treat., 2020, vols. 5–6, p. 415.
  36. Mora-Mendoza, J.L. and Turgoose, S., Fe3C influence on the corrosion rate of mild steel in aqueous CO2 system under turbulent flow conditions, Corr. Sci., 2002, vol. 44, p. 1223. https://doi.org/10.1016/S0010-938X(01)00141-X