Electrochemical detection of Penicillium chrysogenum based on increasing conductivity of polyaminophenylboric acid

E. A. AndreevE. A. Andreev, M. A. KomkovaM. A. Komkova, V. A. KrupeninV. A. Krupenin, D. E. PresnovD. E. Presnov, A. A. KaryakinA. A. Karyakin
Российский электрохимический журнал
Abstract / Full Text

Electrochemical detection of the Penicillium chrysogenum mold is carried out in aqueous solution using decreasing resistance of conducting polyaminophenylboric acid. Polymer resistance is calculated on the basis of the data of electrochemical impedance spectroscopy of polymer-modified interdigitated gold microelectrodes with the interelectrode distance of 10 μm. Polymer degradation and the background signal are directed towards an increase in resistance counter to the change in the polymer properties in the presence of microorganisms. Thus, the developed sensor is applicable in practice, as it allows distinguishing the signal of specific binding from nonspecific background processes. The lower limit of microorganism detection was 600 colony-forming units per 1 mL (CFU/mL).

Author information
  • Chemical Department, Lomonosov Moscow State University, 119991, Moscow, RussiaE. A. Andreev, M. A. Komkova & A. A. Karyakin
  • Physical Department, Lomonosov Moscow State University, 119991, Moscow, RussiaV. A. Krupenin & D. E. Presnov
  1. Iqbal, S.S., Mayo, M.W., Bruno, J.G., Bronk, B.V., Batt, C.A., and Chambers, J.P., Biosens. Bioelectron., 2000, vol. 15, p. 549.
  2. Wang, Y., Ye, Z., and Ying, Y., Sensors, 2012, vol. 12, p. 3449.
  3. Pasparakis, G. and Alexander, C., Analyst, 2007, vol. 132, p. 1075.
  4. Whitcombe, M.J., Kirsch, N., and Nicholls, I.A., J. Mol. Recognit., 2014, vol. 27, p. 297.
  5. Qi, P., Wan, Y., and Zhang, D., Biosens. Bioelectron., 2013, vol. 39, p. 282.
  6. Liu, H., Li, Y., Sun, K., Fan, J., Zhang, P., Meng, J., Wang, S., and Jiang, L., J. Am. Chem. Soc., 2013, vol. 135, p. 7603.
  7. Wannapob, R., Kanatharana, P., Limbut, W., Numnuam, A., Asawatreratanakul, P., Thammakhet, C., and Thavarungkul, P., Biosens. Bioelectron., 2010, vol. 26, p. 357.
  8. Petrovykh, D.Y., Kimura-Suda, H., Whitman, L.J., and Tarlov, M.J., J. Am. Chem. Soc., 2003, vol. 125, p. 5219.
  9. Kurth, D.G. and Bein, T., Langmuir, 1993, vol. 9, p. 2965.
  10. Liu, S., Bakovic, L., and Chen, A., J. Electroanal. Chem., 2006, vol. 591, p. 210.
  11. Ma, Y. and Yang, X., J. Electroanal. Chem., 2005, vol. 580, p. 348.
  12. Andreyev, E.A., Komkova, M.A., Nikitina, V.N., Zaryanov, N.V., Voronin, O.G., Karyakina, E.E., Yatsimirsky, A.K., and Karyakin, A.A., Anal. Chem., 2014, vol. 86, p. 11690.
  13. Nikitina, V.N., Zaryanov, N.V., Karyakina, E.E., and Karyakin, A.A., Russ. J. Electrochem., 2017, vol. 53, in press.
  14. Varshney, M. and Li, Y.B., Biosens. Bioelectron., 2009, vol. 24, p. 2951.
  15. Couniot, N., Flandre, D., Francis, L.A., and Afzalian, A., 26th European Conference on Solid–State Transducers, Eurosensor 2012, 2012, vol. 47, p. 188.
  16. Katz, E. and Willner, I., Electroanalysis, 2003, vol. 15, p. 913.
  17. Raffa, D., Leung, K.T., and Battaglini, F., Anal. Chem., 2003, vol. 75, p. 4983.
  18. Boone, T.D., Ricco, A.J., Fan, Z.H., Tan, H., Hooper, H.H., and Williams, S., Anal. Chem., 2002, vol. 74, p. 78A.
  19. Liu, D., Perdue, R.K., Sun, L., and Crooks, R.M., Langmuir, 2004, vol. 20, p. 5905.