Structure-Phase Changes in Polymer Composites Doped with Silver Nitrate and Their Electrocatalytic Activity

N. M. Ivanova N. M. Ivanova , E. A. Soboleva E. A. Soboleva , Ya. A. Visurkhanova Ya. A. Visurkhanova , E. S. Lazareva E. S. Lazareva
Российский электрохимический журнал
Abstract / Full Text

Polymer-silver composites are prepared by in situ introducing silver(I) nitrate to the oxidative polymerization of aniline and polycondensation of aniline or melamine with formaldehyde. The data of the X-ray phase analysis and electron microscopy are used to study structure-phase changes and morphological features of the structure of composites after synthesis and in electrochemical systems, after their saturation with hydrogen and in the course of o-nitroaniline electrohydrogenation. It is shown that silver micro- and nanoparticles are formed as a result of chemical and/or electrochemical reduction of silver cations. A different electrocatalytic activity of the synthesized silver-containing composites as related to the structure of their polymer matrix is established.

Author information
  • Institute of Organic Synthesis and Coal Chemistry Republic of Kazakhstan, Karaganda, 100008, Kazakhstan

    N. M. Ivanova, E. A. Soboleva, Ya. A. Visurkhanova & E. S. Lazareva

  1. Hasell, T., Thurecht, K.J., Jones, R.D.W., Brown, P.D., and Howdle, S.M., Novel one-pot synthesis of silver nanoparticle-polymer composites by supercritical CO2 polymerization in the presence of a RAFT agent, ChemCom, 2007, p. 3933.
  2. Melinte, V., Buruiana, T., Morarua, I.D., and Buruiana, E.C., Silver–polymer composite materials with antibacterial properties, Digest J. Nanomater. Biostruct., 2011, vol. 6, p. 213.
  3. Singh, R., Singh, D., and Singh, A., Antimicrobial evaluation of silver nanoparticle–polymer composites prepared by gamma-radiation, Amer. J. Polymer Sci. Technol., 2016, vol. 2, no. 2, p. 40.
  4. Bogdanova, L.M., Kuzub, L.I., Dzhavadyan, E.A., Torbov, V.I., Dremova, N.N., and Pomogailo, A.D., Mechanical properties of epoxy composites based on silver nanoparticles formed in situ, Polymer Sci. Ser. A, 2014, vol. 56, p. 304.
  5. Abareshi, M. and Shahroodi, S.M., Effects of silver nanoparticles on the thermal properties of polyethylene matrix nanocomposites, J. Therm. Anal. Calorim., 2017, vol. 128, p. 1117.
  6. Wu, J., Zheng, Y., Song, W., Luan, J., Wen, X., Wu, Z., Chen, X., Wang, Q., and Guo, S., In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing, Carbohydr. Polym., 2014, vol. 102, p. 762.
  7. Gupta, K., Jana, P.C., and Meikap, A.K., Optical and electrical transport properties of polyaniline-silver nanocomposite, Synth. Met., 2010, vol. 160, p. 1566.
  8. Reda, S.M. and Al-Ghannam, S.M., Synthesis and electrical properties of polyaniline composite with silver nanoparticles, Adv. Mater. Phys. Chem., 2012, vol. 2, p. 75.
  9. Wankhede, Y.B., Kondawar, S.B., Thakare, S.R., and More, P.S., Synthesis and characterization of silver nanoparticles embedded in polyaniline nanocomposite, Adv. Mat. Lett., 2013, vol. 4, p. 89.
  10. Stejskal, J., Conducting polymer-silver composites, Chem. Papers, 2013, vol. 63, p. 814.
  11. Tang, L., Duan, F., and Chen, M., Green synthesis of silver nanoparticles embedded in polyaniline nanofibers via vitamin C for supercapacitor applications, J. Mater. Sci.: Mater. Electron., 2017, vol. 28, p. 7769.
  12. Feng, X.M., Huang, H.P., Xu, L., Zhu, J.J., and Hou, W.H., Shape-controlled synthesis of polypyrrole/Ag nanostructures in the presence of chitosan, J. Nanosci. Nanotechnol., 2008, vol. 8, p. 443.
  13. Folarin, O.M., Sadiku, E.R., and Maity, A., Polymer–noble metal nanocomposites: Review, Int. J. Phys. Sci., 2011, vol. 6, p. 4869.
  14. Nanocomposites: In Situ Synthesis of Polymer–Embedded Nanostructures, Nicolais, L. and Carotenuto, G., Eds., Hoboken: John Wiley & Sons, 2013.
  15. Chang, G.H., Luo, Y.L., Lu, W.B., Qin, X.Y., Asiri, A.M., Al-Youbi, A.O., and Sun, X.P., Ag nanoparticles decorated polyaniline nanofibers: synthesis, characterization, and application toward catalytic reduction of 4-nitrophenol and electyrochemical detection of H2O2 and glucose, Catalysis Sci. & Technol., 2012, vol. 2, p. 800.
  16. Kim, K.S. and Park, S.J., Influence of silver-decorated multi-walled carbon nanotubes on electrochemical performance of polyaniline-based electrode, J. Solid State Electrochem., 2011, vol. 184, p. 2724.
  17. Yi, Q.F. and Song, L.H., Polyaniline-modified silver and binary silver–cobalt catalysts for oxygen reduction reaction, Electroanalysis, 2012, vol. 24, p. 1655.
  18. Gao, Y., Shan, D., Cao, F., Gong, J., Li, X., Ma, H.Y., Su, Z.M., and Qu, L.Y., Silver/polyaniline composite nanotubes; One-step synthesis and electrocatalytic activity of neurotransmitter dopamine, J. Phys. Chem. C, 2009, vol. 113, p. 15175.
  19. Singh, R.P., Tiwari, A., and Pandey, A.C., Silver/polyaniline nanocomposite for the electrocatalytic hydrazine oxidation, J. Inorg. Organomet. Polymers Mater., 2011, vol. 21, p. 788.
  20. Ivanova, N.M., Soboleva, E.A., Visurkhanova, Ya.A., and Kirilyus, I.V., Electrocatalytic activity of polyaniline–copper composites in electrohydrogenation of pnitroaniline, Russ. J. Electrochem., 2015, vol. 51, p. 166.
  21. Ivanova, N.M., Visurkhanova, Ya.A., Soboleva, E.A., Pavlenko, N.A., and Muldakhmetov, Z.M., Structure and electrocatalytic activity of aniline–formaldehyde polymer doped with copper(II) chloride, Chem. Select., 2016, vol. 1, p. 5304.
  22. Stejskal, J. and Gilbert, R.G., Polyaniline. Preparation of a conducting polymer, Pure Appl. Chem., 2002, vol. 74, p. 857.
  23. Grigor’ev, A.P. and Fedotova, O.Ya., Laboratornyi praktikum po tekhnologii plasticheskikh mass (Laboratory Practicum on Plastics Technology), Part 2, Moscow: Vysshaya Shkola, 1977 (in Russian).
  24. Pastoriza-Santos, I. and Liz-Marzan, L.M., Synthesis of silver nanoprisms in DMF, Nano Lett., 2002, vol. 2, p. 903.
  25. Courty, A., Henry, A.-I., Goubet, N., and Pileni, M.-P., Large triangular single crystals formed by mild annealing of self-organized silver nanocrystals, Nat. Mater., 2007, vol. 6, p. 900.