Статья
2022

Materials Based on Vanadium Oxide Nanofibers for Electrodes in Electrochemical Power Sources


A. S. Sharlaev A. S. Sharlaev , O. Ya. Berezina O. Ya. Berezina , E. N. Kolobova E. N. Kolobova , V. V. Kondrat’ev V. V. Kondrat’ev
Российский электрохимический журнал
https://doi.org/10.1134/S1023193522050093
Abstract / Full Text

The synthesis of vanadium pentoxide nanofibers by electrospinning and the fabrication of electrode materials for rechargeable lithium-ion batteries are described. The nanofiber samples are characterized by the methods of optical and electron microscopy, energy dispersive X-ray elemental analysis, and X-ray diffraction. The cathode material is tested by cyclic voltammetry and charge–discharge cycling. The maximum initial values of the specific capacity are obtained in an open three-electrode cell (163 mA h/g) and in a model of coin-type battery (320 mA h/g).

Author information
  • Petrozavodsk State University, Institute of Physics and Technology, Petrozavodsk, Russia

    A. S. Sharlaev, O. Ya. Berezina & E. N. Kolobova

  • St. Petersburg State University, Institute of Chemistry, St. Petersburg, Russia

    V. V. Kondrat’ev

References
  1. Afyon, S., Krumeich, F., Mensing, C., Borgschulte, A., and Nesper, R., New high capacity cathode materials for rechargeable Li-ion batteries: vanadate-borate glasses, Sci. Rep., 2014, vol. 4, p. 7113-1.
  2. Ceilidh, F.A., Joyce, S.Y., Xu, L., and Adrian, L., Electrospun vanadium-based oxides as electrode materials, J. Power Sources, 2018, vol. 395, p. 414.
  3. Yu, J.J., Yang, J., Nie, W.B., Li, Z.H., Liu, E.H., Lei, G.T., and Xiao, Q.Z., A porous vanadium pentoxide nanomaterial as cathode material for rechargeable lithium batteries, Electrochim. Acta, 2013, vol. 89, p. 292.
  4. Yan, B., Li, X., Bai, Z., Li, M., Dong, L., Xiong, D., and Li, D., Superior lithium storage performance of hierarchical porous vanadium pentoxide nanofibers for lithium-ion battery cathodes, J. Alloy. Comp., 2015, vol. 634, p. 50.
  5. Zhu, C., Shu, J., Wu, X., Li, P., and Li, X., Electrospun V2O5 micro/nanorods as cathode materials for lithium-ion battery, J. Electroanal. Chem., 2015, vol. 759, no. 2, p. 184.
  6. Yan, B., Li, X., Bai, Z., Li, M., Dong, L., Xiong, D., and Li, D., Sn–Al core–shell nanocomposite as thin film anode for lithium-ion batteries, J. Alloys Compd., 2015, vol. 634, p. 742.
  7. Xue, Y., Castracane, J., Gadre, A., Lee, J.H., and Altemus, B., Fabrication and characterization of aligned continuous polymeric electrospun nanofibers, Micro Nanosyst, 2009, vol. 1, no. 2, p. 116.
  8. Berezina, O.Ya., Kirienko, D.A., Pergament, A.L., Stefanocih, G.B., Velichko, A.A., and Zlomanov, V.P., Vanadium oxide thin films and fibers obtained by acetylacetonate sol–gel method, Thin Solid Films, 2015, vol. 574, p. 15.
  9. Berezina, O.Ya., Kirienko, D.A., Markova, N.P., and Pergament, A.L., Synthesis of vanadium pentoxide micro- and nanofibers by electrospinning, Tech. Phys., 2015, vol. 60, no. 9, p. 1361.
  10. Zakharova, G.S., Vanadium oxide intercalates and nanotubulenes based on them: synthesis, structure, properties, Extended Abstract of Cand. Sci. Dissertation, Yekaterinburg, 2007.
  11. Berenguer, R., Guerrero-Perez, M.O., Guzman, I., Rodriguez-Mirasol, J., and Cordero, T., Synthesis of vanadium oxide nanofibers with variable crystallinity and V5+/V4+ ratios, ACS Omega, 2017, vol. 2, p. 7739.
  12. Nishide, H. and Oyaizu, K., Toward flexible batteries, Science, 2008, vol. 319, no. 5864, p. 737.
  13. Cocciantelli, J., Doumerc, J.P., Pouchard, M., Broussely, M., and Labat, J., Crystalchemistry of electrochemically inserted LixV2O5, J. Power Sources, 1991, vol. 34, p. 103.
  14. Wang, S., Lu, Z., Wang, D., Li, C., Chen, C., and Yin, Y., Porous monodisperse V2O5 microspheres as cathode materials for lithium-ion batteries, J. Mater. Chem., 2011, vol. 21, p. 6365.
  15. Liu, P., Wang, B., Sun, X., Gentle, I., and Zhao, X. S., A comparative study of V2O5 modified with multi-walled carbon nanotubes and poly(3,4-ehtylenedioxythiophene) for lithium-ion batteries, Electrochim. Acta, 2016, vol. 213, p. 557.
  16. Zhu, K., Meng, Y., Qiu, H., Gao, Y., Wang, C., Du, F., Wei, Y., and Chen, Gang, Facile synthesis of V2O5 nanoparticles as a capable cathode for high energy lithium-ion batteries, J. Alloys Compd., 2015, vol. 650, p. 370.
  17. Ramasami, A.K., Reddy, M.V., Nithyadharseni, P., Chowdari, B.V.R., and Balakrishna, G.R., Gel-combustion synthesized vanadium pentoxide nanowire clusters for rechargeable lithium batteries, J. Alloys Compd., 2016, vol. 695, p. 850.
  18. Tang, Y., Rui, X., Zhang, Y., Lim, T.M., Dong, Z., Hng, H.H., Chen, X., Yand, Q., and Chen, Z., Vanadium pentoxide cathode materials for high-performance lithium-ion batteries enabled by a hierarchical nanoflower structure via an electrochemical process, 2013, vol. 1, p. 82.
  19. Wei, Y.J., Ryu, C.W., and Kim, K.B., Improvement in electrochemical performance of V2O5 by Cu doping, Power Sources, 2007, vol. 165, no. 1, p. 386.