Статья
2019

Effect of Plasma-Assisted Electrochemical Treatment of Glassy Carbon Electrode on the Reversible and Irreversible Electrode Reactions


A. G. Krivenko A. G. Krivenko , R. A. Manzhos R. A. Manzhos , V. K. Kochergin V. K. Kochergin
Российский электрохимический журнал
https://doi.org/10.1134/S102319351907005X
Abstract / Full Text

A glassy carbon electrode is modified by generating cathodic and anodic electrolytic plasma near its surface. Voltage pulses of amplitude up to 250 V, pulse-on time of 10 ms, and rise time <0.5 µs in the Na2SO4 aqueous solution are used to form plasma. It is found that, as a result of treatment by the anodic plasma, the glassy carbon surface acquires electrocatalytic properties toward the oxygen reduction reaction, whereas the cathodic plasma has no noticeable effect as compared to the pristine glassy carbon. At the same time, a pronounced effect of plasma-assisted electrochemical treatment of surface on the electron transfer rate constants is found only for the [Fe(CN)6]4–/3– redox reaction. By contrast, for the outer-sphere ([Ru(NH3)6]2+/3+) and inner-sphere (Fe2+/3+) reactions, the effect is not observed. It is supposed that the observed electrocatalytic effect toward the oxygen reduction reaction is caused by the formation of carbonyl fragments of functional groups, which are active centers of oxygen reduction, on the surface of glassy carbon electrode under the action of anodic plasma. However, they have no pronounced effect on the [Ru(NH3)6]2+/3+ and Fe2+/3+ redox systems.

Author information
  • Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia

    A. G. Krivenko & R. A. Manzhos

  • Department of Chemistry, Moscow State University, 119992, Moscow, Russia

    V. K. Kochergin

References
  1. Belkin, P.N. and Kusmanov, S.A., Plasma electrolytic hardening of steels: Review Surf. Eng. Appl. Electrochem., 2016, vol. 52, p. 531. https://doi.org/10.3103/S106837551606003X
  2. Krivenko, A.G., Manzhos, R.A., and Protasova, S.G., Effect of impulse high voltage anodic and cathodic electrochemical treatment of a glassy carbon electrode on the oxygen reduction reaction in alkaline media, Electrochem. Commun., 2018, vol. 96, p. 57. https://doi.org/10.1016/j.elecom.2018.09.012
  3. Lin, A-D., Kung, C-L., Cao, Y.-Q., Hsu, C-M., and Chen, C-Y., Stainless steel surface coating with nanocrystalline Ag film by plasma electrolysis technology, Coatings, 2018, vol. 8, Article Number: 222. https://doi.org/10.3390/coatings8060222
  4. Lee, H., Bratescu, M.A., Ueno, T., and Saito, N., Solution plasma exfoliation of graphene flakes from graphite electrodes, RSC Adv., 2014, vol. 4, p. 51758. https://doi.org/10.1039/c4ra03253e
  5. Chae, S., Hashimi, K., Bratescu, M.A., and Saito, N., The nano-structure and their properties of exfoliation several layers-stacked graphene prepared from graphite dispersed in aqueous solutions by solution plasma, Nanosci. Nanotechnol. Letters, 2016, vol. 10, p. 784. https://doi.org/10.1166/nnl.2018.2716
  6. Krivenko, A.G., Manzhos, R.A., and Kotkin, A.S., Plasma-assisted electrochemical exfoliation of graphite in the pulsed mode, High Energy Chem., 2018, vol. 52, p. 272. https://doi.org/10.1134/S0018143918030074
  7. Shi, J., Hua, X., Zhang, J., Tang, W., Li, H., Shen, X., and Saito N., One-step facile synthesis of Pd nanoclusters supported on carbon and their electrochemical property, Prog. Nat. Sci.-Mater. Int., 2014, vol. 24, p. 593. https://doi.org/10.1016/j.pnsc.2014.10.011
  8. Zhang, YF, Jin, X.Y., Wang, Y, Yu, Y.G., Liu, G.J., Zhang, Z.B., and Xue, W.B., Effects of experimental parameters on phenol degradation by cathodic microarc plasmaelectrolysis, Sep. Purif. Technol., 2018, vol. 201, p. 179. https://doi.org/10.1016/j.seppur.2018.02.054
  9. Bruggeman, P.J., Kushner, M.J., Locke, B.R., Gardeniers, J.G.E., Graham, W.G., Graves, D.B., Hofman-Caris, R.C.H.M., Maric, D., Reid, J.P., Ceriani, E., Fernandez-Rivas, D., Foster, J.E., Garrick, S.C., Gorbanev, Y., Hamaguchi, S., Iza, F., Jablonowski, H., Klimova, E., Kolb, J., Krcma, F., Lukes, P., Machala, Z., Marinov, I., Mariotti, D., Mededovic-Thagard, S., Minakata, D., Neyts, E.C., Pawlat, J., Petrovic, Z.Lj., Pflieger, R., Reuter, S., Schram, D.C., Schröter, S., Shiraiwa, M., Tarabová, B., Tsai, P.A, Verlet, J.R.R., von Woedtke, T., Wilson, K.R., Yasui, K., and Zvereva, G., Plasma–liquid interactions: a review and roadmap, Plasma Sources Sci. Technol. 2016, vol. 25, № 053002. https://doi.org/10.1088/0963-0252/25/5/053002
  10. Parfenov, E., Yerokhin, R., Nevyantseva, A., Gorbatkov, M., Liang, C.J., and Matthews, A., Toward smart electrolytic plasma technologies: an overview of methodological approaches to process modelling, Surf. Coat. Technol., 2015, vol. 269, p. 2. https://doi.org/10.1016/j.surfcoat.2015.02.019
  11. Evans, J.F. and Kuwana, T., Electrocatalysis of solution species using modified electrodes, J. Electroanal. Chem., 1977, vol. 80, p. 409. https://doi.org/10.1016/S0022-0728(77)80064-8
  12. Evans, J.F. and Kuwana, T., Introduction of functional groups onto carbon electrodes via treatment with radio-frequency plasmas, Anal. Chem., 1979, vol. 51, p. 358. https://doi.org/10.1021/ac50039a010
  13. Tao, L., Wang, Q., Dou, S., Ma, Z., Huo, J., Wang, S., and Dai, L., Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction, Chem. Comm., 2016, vol. 52, p. 2764. https://doi.org/10.1039/c5cc09173j
  14. Kuo, T-C. and McCreery, R.L., Surface chemistry and electron-transfer kinetics of hydrogen-modified glassy carbon electrodes, Anal. Chem., 1999, vol. 71, p. 1553. https://doi.org/10.1021/ac9807666
  15. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, New York: Wiley, 2001.
  16. Davis, R.E., Horvath, G.L., and Tobias, C.W., The solubility and diffusion coefficient of oxygen in potassium hydroxide solutions, Electrochim. Acta, 1967, vol. 12, p. 287. https://doi.org/10.1016/0013-4686(67)80007-0
  17. Lide, D.R., CRC Handbook of Chemistry and Physics, Boca Raton: CRC Press, 2001.
  18. Kuriganova, A.B., Leontyev, I.N., Avramenko, M.V., Popov, Y., Maslova, O.A., Koval, O.Y., and Smirnova, N.V., One-step simultaneous synthesis of graphene and Pt nanoparticles under the action of pulsed alternating current and electrochemical performance of Pt/graphene, Catalysis. Chem. Select., 2017, vol. 2, p. 6979. https://doi.org/10.1002/slct.201701186
  19. Leontyev, I., Kuriganova, A., Kudryavtsev, Y., Dkhil, B., and Smirnova, N., New life of a forgotten method: Electrochemical route toward highly efficient Pt/C catalysts for low-temperature fuel cells, Appl. Catal., A, 2012, vol. 431–432, p. 120. https://doi.org/10.1016/j.apcata.2012.04.025
  20. Pontikos, N.M. and McCreery, R.L. Microstructural and morphological changes induced in glassy carbon electrodes by laser irradiation, J. Electroanalyt. Chem., 1992, vol. 324, p. 229. https://doi.org/10.1016/0022-0728(92)80048-9
  21. Yi, Y., Weinberg, G., Prenzel, M., Greinera, M., Heumanna, S., Becker, S., and Schlögl, R., Electrochemical corrosion of a glassy carbon electrode, Catal. Today, 2017, vol. 295, p. 32. https://doi.org/10.1016/j.cattod.2017.07.013
  22. Shoshin, A.A., Arzhannikov, A.V., Burdakov, A.V., Kuklin, K.N., Ivanov, I.A., Mekler, K.I., and Snytnikov, V.N., Structure modification of different graphite and glassy carbon surfaces under high power action by hydrogen plasma, Fusion Sci. Technol., 2011, vol. 59, p. 268. https://doi.org/10.13182/fst11-a11631
  23. Huang, L., Cao, Y., and Diao, D., Nanosized graphene sheets induced high electrochemical activity in pure carbon film, Electrochim. Acta, 2018, vol. 262, p. 173. https://doi.org/10.1016/j.electacta.2018.01.027
  24. Li, O.L., Chiba, S., Wada, Y., Panomsuwan, G., and Ishizaki, T., Synthesis of graphitic-N and amino-N in nitrogen-doped carbon via a solution plasma process and exploration of their synergic effect for advanced oxygen reduction reaction, J. Mater. Chem. A, 2017, vol. 5, p. 2073. https://doi.org/10.1039/c6ta08962c
  25. Kim, H.W., Ross, M.B., Kornienko, N., Zhang, L., Guo, J., Yang, P., and McCloskey, B.D., Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts, Nat. Catal., 2018, vol. 1, p. 282. https://doi.org/10.1038/s41929-018-0044-2
  26. Gardner, S.D., Singamsetty, C.S.K., Booth, G.L., and He, G.-R., Surface characterization of carbon-fibers using angle-resolved XPS and ISS, Carbon, 1995, vol. 33, p. 587. https://doi.org/10.1016/0008-6223(94)00144-O
  27. Oldham, K.B. and Myland, J.C., Modelling cyclic voltammetry without digital simulation, Electrochim. Acta, 2011, vol. 56, p. 10612. https://doi.org/10.1016/j.electacta.2011.05.044
  28. Punckt, C., Pope, M.A., and Aksay, I.A., High selectivity of porous graphene electrodes solely due to transport and pore depletion effects, J. Phys. Chem. C, 2014, vol. 118, p. 22635.
  29. Gyan, I.O., Wojcik, P.M., Aston, D.E., McIlroy, D.N., and Cheng, I.F., A study of the electrochemical properties of a new graphitic material: GUITAR. ChemElectroChem., 2015, vol. 2, p. 700. https://doi.org/10.1002/celc.201402433
  30. Krivenko, A.G., Manzhos, R.A., Komarova, N.S., Kotkin, A.S., Kabachkov, E.N., and Shul’ga Yu.M., Comparative study of graphite and the products of its electrochemical exfoliation, Russ. J. Electrochem., 2018, vol. 54, p. 825. https://doi.org/10.1134/S1023193518110058
  31. Komarova, N.S., Krivenko, A.G., Stenina, E.V., Sviridova, L.N., Mironovich, K.V., Shulga, Y.M., and Krivchenko, V.A., Enhancement of the carbon nanowall film capacitance. Electron transfer kinetics on functionalized surfaces, Langmuir, 2015, vol. 31, p. 7129. https://doi.org/10.1021/acs.langmuir.5b00391
  32. Menegazzo, N., Kahn, M., Berghauser, R., Waldhauser, W., and Mizaikoff, B., Nitrogen-doped diamond-like carbon as optically transparent electrode for infrared attenuated total reflection spectroelectrochemistry, The Analyst, 2011, vol. 136, p. 1831. https://doi.org/10.1039/c0an00503g
  33. Randviir, E.P., Brownson, D.A.C., Gómez-Mingot, M., Kampouris, D.K., Iniesta, J., and Banks, C.E., Electrochemistry of Q-graphene, Nanoscale, 2012, vol. 4, p. 6470. https://doi.org/10.1039/c2nr31823g
  34. Ambrosi, A. and Pumera, M., Electrochemistry at CVD grown multilayer graphene transferred onto flexible substrates, J. Phys. Chem. C, 2013. vol. 117, p. 2053. https://doi.org/10.1021/jp311739n
  35. Brownson, D.A.C., Varey, S.A., Hussain, F., Haigh, S.J., and Banks, C.E., Electrochemical properties of CVD grown pristine graphene: monolayer- vs. quasi-graphene, Nanoscale, 2014, vol. 6, p. 1607. https://doi.org/10.1039/c3nr05643k
  36. Shishmarev, D.S., Rees, N.V., and Compton, R.G., Enhanced performance of edge-plane pyrolytic graphite (EPPG) electrodes over glassy carbon (GC) electrodes in the presence of surfactants: Application to the stripping voltammetry of copper, Electroanalysis, 2009, vol. 22, p. 31. https://doi.org/10.1002/elan.200900415
  37. Kuo, T.-C. and McCreery, R.L., Surface chemistry and electron-transfer kinetics of hydrogen-modified glassy carbon electrodes, Analyt. Chem., 1999, vol. 71, p. 1553. https://doi.org/10.1021/ac9807666
  38. Keeley, G.P., McEvoy, N., Nolan, H., Holzinger, M., Cosnier, S., and Duesberg, G.S., Electroanalytical sensing properties of pristine and functionalized multilayer graphene, Chem. Mater., 2014, vol. 26, p. 1807. https://doi.org/10.1021/cm403501r
  39. Vieira, R.S., Fernandes, A.J.S., and Oliveira, M.C., Electrochemical behaviour of electrogenerated hydrophilic carbon nanomaterials, Electrochim. Acta, 2018, vol. 260, p. 338. https://doi.org/10.1016/j.electacta.2017.10.197
  40. Patel, A.N., Collignon, M.G., O’Connell, M.A., Hung, W.O.Y., McKelvey, K., Macpherson, J.V., and Unwin, P.R., A new view of electrochemistry at highly oriented pyrolytic graphite, J. Amer. Chem. Soc., 2012, vol. 134, p. 20117. https://doi.org/10.1021/ja308615h
  41. Moo, J.G.S., Ambrosi, A., Bonanni, A., and Pumera, M., Inherent electrochemistry and activation of chemically modified graphenes for electrochemical applications, Chem. Asian J., 2012, vol. 7, p. 759. https://doi.org/10.1002/asia.201100852
  42. McCreery, R.L., Advanced carbon electrode materials for molecular electrochemistry, Chem. Rev., 2008, vol. 108, p. 2646. https://doi.org/10.1021/cr068076m
  43. Pleskov Y.V., and Filinovskii, V.Yu., The Rotating Disc Electrode. New York: Consultants Bureau, 1976.
  44. Paulus, U.A., Schmidt, T.J., Gasteiger, H.A., and Behm, R.J., Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: A thin-film rotating ring-disk electrode study, J. Electroanal. Chem., 2001, vol. 495, p. 134. https://doi.org/10.1016/S0022-0728(00)00407-1
  45. Mooste, M., Kibena-Põldsepp, E., Ossonon, B. D., Bélanger, D., and Tammeveski, K., Oxygen reduction on graphene sheets functionalised by anthraquinone diazonium compound during electrochemical exfoliation of graphite, Electrochim. Acta, 2018, vol. 267, p. 246. https://doi.org/10.1016/j.electacta.2018.02.064
  46. Mooste, M., Kibena-Põldsepp, E., Matisen, L., and Tammeveski, K., Oxygen reduction on anthraquinone diazonium compound derivatised multi-walled carbon nanotube and graphene based electrodes, Electroanalysis, 2016, vol. 29, p. 548. https://doi.org/10.1002/elan.201600451
  47. Zhang, H., Lin, C., Sepunaru, L., Batchelor-McAuley, C., and Compton, R.G., Oxygen reduction in alkaline solution at glassy carbon surfaces and the role of adsorbed intermediates, J. Electroanal. Chem., 2017, vol. 799, p. 53. https://doi.org/10.1016/j.jelechem.2017
  48. Toh, S.Y., Loh, K.S., Kamarudin, S.K., and Daud, W.R.W., The impact of electrochemical reduction potentials on the electrocatalytic activity of graphene oxide toward the oxygen reduction reaction in an alkaline medium, Electrochim. Acta, 2016, vol. 199, p. 194. https://doi.org/10.1016/j.electacta.2016.03.103
  49. Zdolšek, N., Dimitrijević, A., Bendová, M., Krstić, J., Rocha, R.P., Figueiredo, J.L., and Šljukić, B., Electrocatalytic activity of ionic-liquid-derived porous carbon materials for the oxygen reduction reaction, ChemElectroChem, 2018, vol. 5, p. 1037. https://doi.org/10.1002/celc.201701369
  50. Yang, Y. and Chang, H., Multi-scale porous graphene/activated carbon aerogel enables lightweight carbonaceous catalysts for oxygen reduction reaction, J. Mater. Res., 2017, vol. 33, p. 1247–1257. https://doi.org/10.1557/jmr.2017.372
  51. Choi, W., Azad, U.P., Choi, J.-P., and Lee, D., Electrocatalytic oxygen reduction by dopant-free, porous graphene aerogel, Electroanalysis, 2018, vol. 30, p. 1472. https://doi.org/10.1002/elan.201800089
  52. He, Q. and Cairns, E.J., Review–Recent progress in electrocatalysts for oxygen reduction suitable for alkaline anion exchange membrane fuel cells, J. Electrochem. Soc., 2015, vol. 162, p. F1504. https://doi.org/10.1149/2.0551514jes
  53. Deng, D., Novoselov, K.S., Fu, Q., Zheng, N., Tian, Z., and Bao, X., Catalysis with two-dimensional materials and their heterostructures, Nature Nanotechnol., 2016, vol. 11, p. 218. https://doi.org/10.1038/nnano.2015.340