Electric Conductivity of In2(MoO4)3 and Composites (1 – х)In2(MoO4)3хMoO3

N. N. Pestereva N. N. Pestereva , A. F. Guseva A. F. Guseva , Ya. A. Dahle Ya. A. Dahle
Российский электрохимический журнал
Abstract / Full Text

Indium molybdate and eutectic composites (1 – х)In2(MoO4)3хMoO3 (where the molar fraction is х = 0; 0.1; 0.3; 0.5) were synthesized, their conductivity has been studied as a function of the temperature and oxygen pressure in the gas phase. The ion transport numbers were determined by the Tubandt method. In2(MoO4)3 is shown to be an ionic conductor, the main charge carrier being the molybdate ion, \({\text{MoO}}_{4}^{{2 - }}.\) No composite effect is found in the In2(MoO4)3–MoO3 system: at 600°С the conductivity of the composites (1 ‒ х)In2(MoO4)3хMoO3 does not depend on the MoO3 content. The absence of the composite effect is likely to be due to the negative thermal expansion coefficient of In2(MoO4)3, which prevents the formation of a highly conductive continuous film at the In2(MoO4)3/MoO3 interface.

Author information
  • El’tsyn Ural Federal University, 620002, Yekaterinburg, Russia

    N. N. Pestereva, A. F. Guseva & Ya. A. Dahle

  1. He, T. and Yao, J., Photochromism of molybdenum oxide, J. Photochem. Photobiol. C: Photochem. Rev., 2003, vol. 4, p. 125.
  2. Gurlo, A., Bârsan, N., Ivanovskaya, M., Weimar, U., and Göpel, W., In2O3 and MoO3–In2O3 thin film semiconductor sensors: interaction with NO2 and O3, Sens. Actuators B., 1998, vol. 47, p. 92.
  3. Epifani, M., Siciliano, P., Gurlo, A., Barsan, N., and Weimar, U., Ambient pressure synthesis of corundum-type In2O3, J. Am. Chem. Soc., 2004, vol. 126, p. 4078.
  4. Solov’eva, A.E., Phase transformations in polycrystalline indium oxide, Refract. Ind. Ceram., 1987, vol. 28, p. 380.
  5. Yu, D., Wang, D., and Qian, Y., Synthesis of metastable hexagonal In2O3 nanocrystals by a precursor—dehydratation route under ambient pressure, J. Solid State Chem., 2004, vol. 177, p. 1230.
  6. Filipek, E., Rychlowska-Himmel, I., and Paczesna, A., Thermal stability of In2(MoO4)3 and phase equilibria in the MoO3–In2O3 system, J. Therm. Anal. Calorim., 2012, vol. 109, p. 711.
  7. Poray-Koshyts, M.A. and Atovmyan, L.O., Crystal Chemistry and Stoichiometry of Molybdenum Coordination Compounds (in Russian), Moscow: Nauka, 1974.
  8. Fisher, D.J., Negative Thermal Expansion Materials, Materials Research Foundations, 2018, vol. 22, p. 178.
  9. Zhou, Y., Adams, S., Rao, P.R., Edwards, D.D., Neiman, A., and Pestereva, N., Charge Transport by Polyatomic Anion Diffusion in Sc2(WO4)3, Chem. Mater., 2008, vol. 20, p. 6335.
  10. Neiman, A.Ya., Pestereva, N.N., Sharafutdinov, A.R., et al., Conduction and transport numbers in metacomposites MeWO4–WO3 (Me – Ca, Sr, Ba), Russ. J. Electrochem., 2005, vol. 41, p. 598.
  11. Pestereva, N.N., Zhukova, A.Yu., and Neiman, A.Ya., Transport numbers and ionic conduction of eutectic methacomposites {MeWO4·xWO3} (Me – Sr, Ba), Russ. J. Electrochem., 2007, vol. 43, p. 1305.
  12. Partin, G.S., Pestereva, N.N., Korona, D.V., and Neiman, A.Y., Effect of composition of {(100 – x)CaWO4xV2O5} and {(100 – x)LaVO4xV2O5} composites on their conductivity, Russ. J. Electrochem., 2015, vol. 51, p. 945.
  13. Koteneva, E.A., Pestereva, N.N., Animitsa, I.E., and Uvarov, N.F., Transport properties of metacomposites in eutectic systems MAO4–V2O5 (M = Ca, Sr; A = W, Mo), Russ. J. Electrochem., 2017, vol. 53, p. 739.
  14. Koteneva, E.A., Pestereva, N.N., Astapova, D.V., Neiman, A.Y., and Animitsa, I.E., Transport properties of SrMoO4|MoO3 composites, Russ. J. Electrochem., 2017, vol. 53, p. 187.
  15. Neiman, A.Ya., Karapetyan, A.V., and Pestereva, N.N., Conductivity of composite materials based on Me2(WO4)3 and WO3 (Me = Sc, In), Russ. J. Electrochem., 2014, vol. 50. p. 58.
  16. Guseva, A.F., Pestereva, N.N., Otcheskikh, D.D., and Vostrotina, E.L., Conductivity of Al2(WO4)3–WO3 and Al2(WO4)3–Al2O3 composites, Russ. J. Electrochem., 2019, vol. 55. p. 544.
  17. Kazenas, E.K. and Chizhikov, D.M., Pressure and Composition of Steam Over Oxides of Chemical Elements (in Russian), Moscow: Nauka, 1976.
  18. Neiman, A.Ya., Pestereva, N.N., Zhou Y., Nechaev, D.O., Koteneva, E.A., Vanec, K., Higgins, B., Volkova, N.A., and Korchuganova, I.G., The nature and the mechanism of ion transfer in tungstates Me2+{WO4} (Ca, Sr, Ba) and M3+{WO4}3 (Al, Sc, In) according to the data acquired by the Tubandt method, Russ. J. Electrochem., 2013, vol. 49. p. 895.
  19. Higgins, B., Graeve, O.A., and Edwards, D.D., New methods for preparing submicrometer powders of the tungstate-ion conductor Sc2(WO4)3 and its Al and In analogs, J. Am. Ceram. Soc., 2013, vol. 96, p. 2402.
  20. Adachi, G., Imanaka, N., and Tamura, S., Rare earth ion conduction in solids, J. Alloys Compd, 2001, vols. 323–324, p. 534.
  21. Alfonso, J.E., Garzón, R., and Moreno, L.C., Behavior of the thermal expansion coefficient of α-MoO3 as a function of the concentration of the Nd3+ ion, Physica B: Condensed Matter, 2012, vol. 407, p. 4001.
  22. Guseva, A.F., Pestereva, N.N., Vostrotina, E.L., Otcheskikh, D.D., and Lopatin, D.A., Ionic conductivity of solid solutions and composites based on Sm2W3O12, Russ. J. Electrochem., 2020, vol. 56. p. 447.