Статья
2018

Bismuth Tellurate Nanospheres and Electrochemical Behaviors of L-Cysteine at the Nanospheres Modified Electrode


L. Z. Pei L. Z. Pei , T. Wei T. Wei , N. Lin N. Lin , H. Zhang H. Zhang , C. G. Fan C. G. Fan
Российский электрохимический журнал
https://doi.org/10.1134/S102319351711012X
Abstract / Full Text

Bismuth tellurate nanospheres have been successfully synthesized by a facile hydrothermal route. X-ray diffraction (XRD) shows that the nanospheres are composed of orthorhombic Bi2Te2O7 phase. Scanning electron microscopy (SEM) displays that the diameter of the nanospheres is 100–500 nm. The bismuth tellurate nanospheres (BTS) modified glassy carbon electrode (GCE) has been prepared for the electrochemical detection of L-cysteine (L-CySH). A pair of semi-reversible CV peaks at +0.14 V and–0.84 V, respectively are observed. The BTS modified GCE displays high electrocatalytic activity toward L-CySH and exhibits a linear relationship in the range of 0.0001–2 mM with a detection limit of 0.046 μM in KCl solution. The broad linear range, low detection limit, good reproducibility and stability make the BTS modified GCE valuable for the practical application.

Author information
  • Key Lab of Materials Science and Processing of Anhui Province, School of Materials Science and Engineering, Anhui University of Technology, Ma’anshan, Anhui, 243002, People’s Republic of China

    L. Z. Pei, T. Wei, N. Lin, H. Zhang & C. G. Fan

References
  1. Azadbakht, A., Abbasi, A.R., Derikvand, Z., and Karimi, Z., Nano-Micro Lett., 2015, vol. 7, p.152.
  2. Hung, M. and Stanbury, D.M., Inorg. Chem., 2005, vol. 44, p. 3541.
  3. Inoue, T. and Kirchhoff, J.R., Anal. Chem., 2000, vol. 72, p. 5755.
  4. Ardakani, M.M., Rahimi, P., Karami, P.E., Zare, H.R., and Naeimi, H., Sensor. Actuat. B, 2007, vol. 123, p.763.
  5. Sharifi, E., Salimi, A., and Shams, E., Bioelectrochemistry, 2012, vol. 86, p.9.
  6. Wang, W., Rusin, O., Xu, X., Kim, K.K., Escobedo, J.O., Fakayode, S.O., Fletcher, K.A., Lowry, M., Schowalter, C.M., Lawrence, C.M., Fronczek, F.R., Warner, I.M., and Strongin, R.M., J. Am. Chem. Soc., 2005, vol. 127, p. 15949.
  7. Ummadi, M. and Weimer, B.C., J. Chromat. A, 2002, vol. 964, p.243.
  8. Tanaka, F., Mase, N., and Barbas, C.F., Chem. Commun., 2004, vol. 5, p. 1762.
  9. Chwatko, G. and Bald, E., Talanta, 2000, vol. 52, p.509.
  10. Zhou, Z.L., Kang, T.F., Zhang, Y., and Chen, S.Y., Microchim. Acta, 2009, vol. 164, p.133.
  11. Ma, J.Y., Zhang, Y.S., Zhang, X.H., Zhu, G.B., Liu, B., and Chen, J.H., Talanta, 2012, vol. 88, p.696.
  12. Ge, S., Yan, M., Lu, J., Zhang, M., Yu, F., Yu, J., Song, X., and Yu, S., Biosens. Bioelectron., 2012, vol. 31, p.49.
  13. Hosseini, H., Ahmar, H., Dehghani, A., Bagheri, A., Tadjarodi, A., and Fakhari, A.R., Biosens. Bioelectron., 2013, vol. 42, p.426.
  14. Amjadi, M., Abolghasemi-Fakhri, Z., and Hallaj, T., J. Photochem. Photobiol. A, 2015, vol. 309, p.8.
  15. Zhang, Z.H., Zhang, S. Liu, S.L., Wang, M.H., Fu, G.D., He, L.H., Yang, Y.Q., and Fang, S.M., Sensor. Actuat. B, 2015, vol. 220, p.184.
  16. Zhou, J., Zhuang, J.Y., Miró, M., Gao, Z.Q., Chen, G.N., and Tang, D.P., Biosensor. Bioelectron., 2012, vol. 35, p.394.
  17. Han, D., Song, P., Zhang, S., Zhang, H.H., Xu, Q., and Wang, Q., Sensor. Actuat. B, 2015, vol. 216, p.488.
  18. Lovas, G.A., Dódony, I., Pöppl, L., and Szaller, Z., J. Solid State Chem., 1998, vol. 135, p.175.
  19. Dityatyev, O.A., Smidt, P., Stefanovich, S.Y., Lightfoot, P., Dolgikh, V.A., and Opperman, H., Solid State Sci., 2004, vol. 6, p.915.
  20. Berdonosov, P.S., Charkin, D.O., Kusainova, A.M., Hervoches, C.H., Dolgikh, V.A., and Lightfoot, P., Solid State Sci., 2000, vol. 2, p.553.
  21. Lin, L.W., Tang, Y.H., Chen, C.S., and Xu, H.F., Cryst. Eng. Commun., 2010, vol. 12, p. 2975.
  22. Lin, L.W., Tang, Y.H., and Chen, C.S., Nanotechnology, 2009, vol. 20, p. 175601.
  23. Lin, L.W. and He, Y.H., Cryst. Eng. Commun., 2012, vol. 14, p. 3250.
  24. Lin, L.W., Sun, X.Y., Jiang, Y., and He, Y.H., Nanoscale, 2013, vol. 5, p. 12518.
  25. Reddy, M.P., Mohamed, A.M.A., Zhou, X.B., Du, S., and Huang, Q., J. Mag. Mag. Mater., 2015, vol. 388, p.40.
  26. Joula, M.H. and Farbod, M., Appl. Surf. Sci., 2015, vol. 347, p.535.
  27. Li, G.J., Liu, L.H., Cheng, Y., Gong, S.X., Wang, X.L., Geng, X.J., and Sun, W., Anal. Methods, 2014, vol. 6, p. 9354.
  28. Shen, R.Y., Zhang, W.M., Yuan, Y., He, G.Y., and Chen, H.Q., J. Appl. Electrochem., 2015, vol. 45, p.343.
  29. Gao, W.Q., Wan, F.W., Ni, W., Wang, S.W., Zhang, M., and Yu, J.H., J. Inorg. Organomet. Polym., 2012, vol. 22, p.37.
  30. Ralph, T.R., Hitchman, M.L., Millington, J.P., and Walsh, F.C., J. Electroanal. Chem., 1994, vol. 375, p.1.
  31. Hu, F.G., Wang, F., Yang, D.G., Gao, Y., and Li, H.M., Mat. Sci. Eng. C, 2014, vol. 38, p.292.
  32. Xiao, C.H., Chen, J.H., Liu, B., Chu, X.C., Wu, L., and Yao, S.Z., Phys. Chem. Chem. Phys., 2011, vol. 13, p. 1568.
  33. Mazzotta, E., Malitesta, C., and Margapoti, E., Anal. Bioanal. Chem., 2013, vol. 405, p. 3587.
  34. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, New York: John Wiley & Sons, Inc., 2000.
  35. Ao, Z.M. and Peeters, F.M., J. Phys. Chem. C, 2010, vol. 114, p. 14503.
  36. Dong, Y. and Zheng, J.B., J. Mol. Liq., 2014, 196, p.280.
  37. Liu, Z.N., Zhang, H.C., Hou, S.F., and Ma, H.Y., Microchim. Acta, 2012, vol. 177, p.427.
  38. Deng, C.Y., Chen, J.H., Chen, X.L., Wang, M.D., Nie, Z., and Yao, S.Z., Electrochim. Acta, 2009, vol. 54, p. 3298.
  39. Dong, Y.P., Pei, L.Z., Chu, X.F., Zhang, W.B., and Zhang, Q.F., Electrochim. Acta, 2010, vol. 55, p. 5135.
  40. Pei, L.Z., Cai, Z.Y., Pei, Y.Q., Xie, Y.K., Fan, C.G., and Fu, D.G., Russ. J. Electrochem., 2014, vol. 50, p.458.
  41. Ziyatdinova, G., Grigor’eva, L., Morozov, M., Gilmutdinov, A., and Budnikov, H., Microchim. Acta, 2009, vol. 165, p.353.
  42. Spataru, N., Sarada, B.V., Papa, E., Tryk, D.A., and Fujishima, A., Anal. Chem., 2001, vol. 73, p.514.
  43. Ahmad, M., Pan, C.F., and Zhu, J., J. Mater. Chem., 2010, vol. 20, p. 7169.
  44. Tang, X.F., Liu, Y., Hou, H.Q., and You, T.Y., Talanta, 2010, vol. 80, p. 2182.
  45. Dharmapandian, P., Rajesh, S., Rajasingh, S., Rajendran, A., and Karunakaran, C., Sensor. Actuat. B, 2010, vol. 148, p.17.
  46. Chen, Z., Zheng, H., Lu, C., and Zu, Y., Langmuir, 2007, vol. 23, p. 10816.
  47. Chen, S.M., Chen, J.Y., and Thangamuthu, R., Electroanal., 2008, vol. 20, p. 1565.
  48. Salimi, A. and Hallaj, R., Talanta, 2005, vol. 66, p.967.
  49. Fei, S.D., Chen, J.H., Yao, S.Z., Deng, G.H., He,D.L., and Kuang, Y.F., Anal. Biochem., 2005, vol. 339, p.29.
  50. Bai, Y.H., Xu, J.J., and Chen, H.Y., Biosens. Bioelectron., 2009, vol. 24, p. 2985.