Статья
2019

Electrochemical Peculiarities of Mediator-Assisted Bioelectrocatalytic Oxidation of Glucose by a New Type of Bioelectrocatalyst


M. V. Dmitrieva M. V. Dmitrieva , E. V. Gerasimova E. V. Gerasimova , A. A. Terent’ev A. A. Terent’ev , Yu. A. Dobrovol’skii Yu. A. Dobrovol’skii , E. V. Zolotukhina E. V. Zolotukhina
Российский электрохимический журнал
https://doi.org/10.1134/S1023193519090064
Abstract / Full Text

A protein extract of microbe cells is studied as a bioelectrocatalyst for glucose oxidation. The microbial protein extract prepared from Escherichia coli BB, which comprises all enzymes of the life cycle of these bacteria, is considered here as a model system. This system demonstrates the mediator mechanism of interaction with an inert glassy-carbon electrode in a buffer containing glucose as the substrate. The efficiency of the bioelectrocatalytic process was shown to depend on the type of mediator system and also on the nature of buffer, its temperature, pH, and ionic strength. The protein extract is shown to contain NAD-dependent Fe-glucosodehydrogenase and demonstrate the current densities in mediator-assisted glucose oxidation well comparable with the known data for pure dehydrogenase enzymes and E. coli microbial systems. The prospects for further studies and practical applications of this new bioelectrocatalyst type are outlined.

Author information
  • Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia

    M. V. Dmitrieva, E. V. Gerasimova, A. A. Terent’ev, Yu. A. Dobrovol’skii & E. V. Zolotukhina

References
  1. Cosnier, S., Gross, A.J., Le Goff, A., and Holzinger, M., Recent advances on enzymatic glucose/oxygen and hydrogen/oxygen biofuel cells: Achievements and limitations, J. Power Sources, 2016, vol. 325, p. 252.
  2. Dmitrieva, M.V., Zolotukhina, E.V., Gerasimova, E.V., Terent’ev, A.A., and Dobrovol’skii, Y.A., Dehydrogenase and electrochemical activity of Escherichia coli extracts, Appl. Biochem. Microbiol., 2017, vol. 53, p. 458.
  3. Palmore, G.T.R. and Whitesides, G.M., Microbial and enzymatic biofuel cells, in: Enzymatic Conversion of Biomass for Fuels Production, Himmel, M.E., Baker, J.O., and Overend, R.P. Eds., Washington, DC: Am. Chem. Soc., 1994, p. 271.
  4. Herrero-Hernández, E., Smith, T.J., and Akid, R., Electricity generation from wastewaters with starch as carbon source using a mediatorless microbial fuel cell, Biosens. Bioelectron., 2013, vol. 39, p. 194.
  5. Yong-Jin, Z., Li-Xian, S., Fen, X., and Li-Ni, Y., E. coli microbial fuel cell using new methylene blue as electron mediator, Chem. Res. Chin. Univ. 2007, vol. 28, p. 510.
  6. Neto, S.A., Milton, R.D., Crepaldi, L.B., Hickey, D.P., De Andrade, A.R., and Minteer, S.D., Co-immobilization of gold nanoparticles with glucose oxidase to improve bioelectrocatalytic glucose oxidation, J. Power Sources, 2015, vol. 285, p. 493.
  7. Rahimnejad, M., Adhami, A., Darvari, S., Zirepour, A., and Oh, S.E., Microbial fuel cell as new technology for bioelectricity generation: A review, Alexandria Eng. J., 2015, vol. 54, p. 745.
  8. Milton, R.D., Lim, K., Hickey, D.P., and Minteer, S.D., Employing FAD-dependent glucose dehydrogenase within a glucose/oxygen enzymatic fuel cell operating in human serum, Bioelectrochem., 2015, vol. 106, p. 56.
  9. Miyake, T., Oike, M., Yoshino, S., Yatagawa, Y., Haneda, K., Kaji, H., and Nishizawa, M., Biofuel cell anode: NAD+/glucose dehydrogenase-coimmobilized ketjenblack electrode, Chem. Phys. Lett., 2009, vol. 480, p. 123.
  10. Rabaey, K., Boon, N., Höfte, M., and Verstraete, W., Microbial phenazine production enhances electron transfer in biofuel cells, Environ. Sci. Technol., 2005, vol. 39, p. 3401.
  11. Rahimnejad, M., Najafpour, G.D., Ghoreyshi, A.A., Shakeri, M., and Zare, H., Methylene blue as electron promoters in microbial fuel cell, Int. J. Hydrogen Energy, 2011, vol. 36, p. 13335.
  12. Rossi, R. and Setti, L., Effect of methylene blue on electron mediated microbial fuel cell by Saccharomyces cerevisiae, Environ. Eng. Manage. J., 2016, vol. 16, p. 2011.
  13. Rahimnejad, M., Najafpour, G.D., Ghoreyshi, A.A., Talebnia, F., Premier, G.C., Bakeri, G., Kim, J.R., and Oh, S., Thionine increases electricity generation from microbial fuel cell using Saccharomyces cerevisiae and exoelectrogenic mixed culture, J. Microbiol., 2012, vol. 50, p. 575.
  14. Park, D.H. and Zeikus, J.G., Electricity generation in microbial fuel cells using neutral red as an electronophore, Appl. Environ. Microbiol., 2000, vol. 66, p. 1292.
  15. Wang, K., Liu, Y., and Chen, S., Improved microbial electrocatalysis with neutral red immobilized electrode, J. Power Sources, 2011, vol. 196, p. 164.
  16. Li, X., Zhou, H., Yu, P., Su, L., Ohsaka, T., and Mao, L., A Miniature glucose/O2 biofuel cell with single-walled carbon nanotubes-modified carbon fiber microelectrodes as the substrate, Electrochem. Commun., 2008, vol. 10, p. 851.
  17. Sun, J., Li, W., Li, Y., Hu, Y., and Zhang, Y., Redox mediator enhanced simultaneous decolorization of azo dye and bioelectricity generation in air-cathode microbial fuel cell, Bioresour. Technol., 2013, vol. 142, p. 407.
  18. Xu, H. and Quan, X., Anode modification with peptide nanotubes encapsulating riboflavin enhanced power generation in microbial fuel cells, Int. J. Hydrogen Energy, 2016, vol. 41, p. 1966.
  19. Liu, Y. and Dong, S., A biofuel cell harvesting energy from glucose–air and fruit juice–air, Biosens. Bioelectron., 2007, vol. 23, p. 593.
  20. Liu, S.N., Yin, Y.J., and Cai, C.X., Immobilization and characterization of glucose oxidase on single-walled carbon nanotubes and its application to sensing glucose, Chin. J. Chem., 2007, vol. 25, p. 439.
  21. Razumiene, J., Meškys, R., Gureviciene, V., Laurinavicius, V., Reshetova, M.D., and Ryabov, A.D., 4-Ferrocenylphenol as an electron transfer mediator in PQQ-dependent alcohol and glucose dehydrogenase-catalyzed reactions, Electrochem. Commun., 2000, vol. 2, p. 307.
  22. Yuan, Y., Shin, H., Kang, C., and Kim, S., Wiring microbial biofilms to the electrode by osmium redox polymer for the performance enhancement of microbial fuel cells, Bioelectrochem. Bioenerg., 2016, vol. 108, p. 8.
  23. Conghaile, P.Ó., Pöller, S., MacAodha, D., Schuhmann, W., and Leech, D., Coupling osmium complexes to epoxy-functionalised polymers to provide mediated enzyme electrodes for glucose oxidation, Biosens. Bioelectron., 2013, vol. 43, p. 30.
  24. Pankratova, G., Hasan, K., Leech, D., Hederstedt, L., and Gorton, L., Electrochemical wiring of the Gram-positive bacterium Enterococcus faecalis with osmium redox polymer modified electrodes, Electrochem. Commun., 2017, vol. 75, p. 56.
  25. Nien, P.C., Wang, J.Y., Chen, P.Y., Chen, L.C., and Ho, K.C., Encapsulating benzoquinone and glucose oxidase with a PEDOT film: Application to oxygen-independent glucose sensors and glucose/O2 biofuel cells, Bioresour. Technol., 2010, vol. 101, p. 5480.
  26. Harreither, W., Coman, V., Ludwig, R., Haltrich, D., and Gorton, L., Investigation of graphite electrodes modified with cellobiose dehydrogenase from the ascomycete Myriococcumthermophilum, Electroanalysis, 2007, vol. 19, p. 172.
  27. Babkina, E., Chigrinova, E., Ponamoreva, O.G., Alferov, V., and Reshetilov, A., Bioelectrocatalytic oxidation of glucose by immobilized bacteria Gluconobacteroxydans. Evaluation of water-insoluble mediator efficiency, Electroanalysis, 2006, vol. 18, p. 2029.
  28. Ivanov, I., Vidaković-Koch, T., and Sundmacher, K., Recent advances in enzymatic fuel cells: experiments and modeling, Energies (Basel, Switz.), 2010, vol. 3, p. 803.
  29. Stoica, L., Ruzgas, T., Ludwig, R., Haltrich, D., and Gorton, L., Direct electron transfers a favorite electron route for cellobiose dehydrogenase (CDH) from Trametes v illosa. Comparison with CDH from Phanerochaete chrysosporium, Langmuir, 2006, vol. 22, p. 10801.
  30. Hibbert, D.B. and James, A.M., Macmillan Dictionary of Chemistry, Luxembourg: Springer, 1987.
  31. Patnaik, P., A Comprehensive Guide to the Hazardous Properties of Chemical Substances, New York: Wiley, 2007.
  32. Impert, O., Katafias, A., Kita, P., Mills, A., Pietkiewicz-Graczyk, A., and Wrzeszcz, G., Kinetics and mechanism of a fast leuco-Methylene Blue oxidation by copper(II)–halide species in acidic aqueous media, J. Chem. Soc., Dalton Trans., 2003, vol. 3, p. 348.
  33. Zuhri, F., Arbianti, R., Utami, T.S., and Hermansyah, H., Effect of methylene blue addition as a redox mediator on performance of microbial desalination cell by utilizing tempe wastewater, Chem. Eng., 2016, vol. 7, p. 952.
  34. Ghaly, A.E. and Mahmoud, N.S., Optimum conditions for measuring dehydrogenase activity of Aspergillus niger using TTC, Amer. J. Biochem. Biotechnol., 2006, vol. 2, p. 186.
  35. Zhang, Y. and Cremer, P.S., Interactions between macromolecules and ions: the Hofmeister series, Curr. Opin. Chem. Biol., 2006, vol. 10 (2006), p. 658.
  36. Cacace, M.G., Landau, E.M., and Ramsden, J.J., The Hofmeister series: salt and solvent effects on interfacial phenomena, Q. Rev. Biophys., 1997, vol. 30, p. 241.
  37. Naushad, M., ALOthman, Z.A., Khan, A.B., and Ali, M., Effect of ionic liquid on activity, stability, and structure of enzymes: a review, Int. J. Biol. Macromol., 2012, vol. 51, p. 555.
  38. Keefe, A.J. and Jiang, S., Poly (zwitterionic) protein conjugates offer increased stability without sacrificing binding affinity or bioactivity, Nat. Chem., 2012, vol. 4, p. 59.
  39. Garajová, K., Balogová, A., Dušeková, E., Sedláková, D., Sedlák, E., and Varhač, R., Correlation of lysozyme activity and stability in the presence of Hofmeister series anions, Biochim. Biophys. Acta, 2017, vol. 1865, p. 281.
  40. Okur, H.I., Hladilkova, J., Rembert, K.B., Cho, Y., Heyda, J., Dzubiella, J., Cremer, P.S., and Jungwirth, P., Beyond the Hofmeister series: Ion-specific effects on proteins and their biological functions, J. Phys. Chem. B, 2017, vol. 121, p. 1997.
  41. Glock, G.E. and McLean, P., Further studies on the properties and assay of glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase of rat liver, Biochem. J., 1953, vol. 55, p. 400.
  42. Zhao, H., Olubajo, O., Song, Z., Sims, A.L., Person, T.E., Lawal, R.A., and Holley, L.A., Effect of kosmotropicity of ionic liquids on the enzyme stability in aqueous solutions, Bioorg. Chem., 2006, vol. 34, p. 15.
  43. Shaw, C.R. and Prasad, R., Starch gel electrophoresis of enzymes—a compilation of recipes, Biochem. Genet., 1970, vol. 4, p. 297.
  44. Orr, M.D., Blakley, R.L., and Panagou, D., Discontinuous buffer systems for analytical and preparative electrophoresis of enzymes on polyacrylamide gel, Anal. Biochem., 1972, vol. 45, p. 68.
  45. Selander, R.K., Caugant, D.A., Ochman, H., Musser, J.M., Gilmour, M.N., and Whittam, T.S., Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematic, Appl. Environ. Microbiol., 1986, vol. 51, p. 873.
  46. Cohen, P. and Rosemeyer, M.A., Human glucose-6-phosphate dehydrogenase: purification of the erythrocyte enzyme and the influence of ions on its activity, FEBS J., 1969, vol. 8, p. 1.
  47. Kalnitsky, G., Hummel, J.P., and Dierks, C., Some factors which affect the enzymatic digestion of ribonucleic acid, J. Biol. Chem., 1958, vol. 234, p. 1512.
  48. Leprince, F. and Quiquampoix, H., Extracellular enzyme activity in soil: effect of pH and ionic strength on the interaction with montmorillonite of two acid phosphatases secreted by the ectomycorrhizal fungus Hebeloma cylindrosporum, Eur. J. Soil Sci., 1996, vol. 47, p. 511.
  49. Guilbault, G.G., Enzymatic Methods of Analysis: International Series of Monographs in Analytical Chemistry, Amsterdam: Elsevier, 2013.
  50. Vroman, H.E. and Brown, J.R.C., Effect of temperature on the activity of succinic dehydrogenase from the livers of rats and frogs, J. Cell. Physiol., 1963, vol. 61, p. 129.
  51. Trevors, J.T., Effect of substrate concentration, inorganic nitrogen, O2 concentration, temperature and pH on dehydrogenase activity in soil, Plant Soil, 1984, vol. 77, p. 285.
  52. Wolberg, A.S., Meng, Z.H., Monroe, D.M., III, and Hoffman, M., A systematic evaluation of the effect of temperature on coagulation enzyme activity and platelet function, J. Trauma Acute Care Surg., 2004, vol. 56, p. 1221.
  53. Immanuel, G., Dhanusha, R., Prema, P., and Palavesam, A., Effect of different growth parameters on endoglucanase enzyme activity by bacteria isolated from coir retting effluents of estuarine environment, Int. J. Environ. Sci. Technol., 2006, vol. 3, p. 25.
  54. Taylor, S., Enzymes in Food Processing, Amsterdam: Elsevier, 2013.
  55. Del Prete, S., De Luca, V., Scozzafava, A., Carginale, V., Supuran, C.T., and Capasso, C., Biochemical properties of a new α-carbonic anhydrase from the human pathogenic bacterium, Vibrio cholera, J. Enzyme Inhib. Med. Chem., 2014, vol. 29, p. 23.
  56. Lobo, M.J., Miranda, A.J., and Tuñón, P., Amperometric biosensors based on NAD(P)—dependent dehydrogenase enzymes, Electroanalysis, 1997, vol. 9, p. 191.