Examples



mdbootstrap.com



 
Статья
2016

Invariants of the action of a semisimple Hopf algebra on PI-algebra


M. S. EryashkinM. S. Eryashkin
Русская математика
https://doi.org/10.3103/S1066369X1608003X
Abstract / Full Text

We extend several classical results in the theory of invariants of finite groups to the case of action of a finite-dimensional Hopf algebra H on an algebra satisfying a polynomial identity. In particular, we prove that an H-module algebra A over an algebraically closed field k is integral over the subalgebra of invariants, if H is a semisimple and cosemisimple Hopf algebra. We show that for char k > 0, the algebra Z \({\left( A \right)^{{H_0}}}\) is integral over the subalgebra of central invariants Z(A)H, where Z(A) is the center of algebra A, H 0 is the coradical of H. This result allowed us to prove that the algebra A is integral over the subalgebra Z(A)H in some special case. We also construct a counterexample to the integrality of the algebra \({A^{{H_0}}}\) over the subalgebra of invariants A H for a pointed Hopf algebra over a field of non-zero characteristic.

Author information
  • Kazan (Volga Region) Federal University, ul. Kremlyovskaya 18, Kazan, 420008, RussiaM. S. Eryashkin
References
  1. Skryabin, S.M. “Invariants of Finite Hopf Algebras”, Advances inMath. 183, No. 2, 209–239 (2004).
  2. Montgomery, S., Small, L. W. “Integrality and Prime Ideals in Fixed Rings of PI Rings”, J. Pure and Appl. Algebra 31, 185–190 (1984).
  3. Sweedler, M. E. Hopf Algebras (Benjamin, New York, 1969).
  4. Schelter, W. “Integral Extensions of Rings Satisfying a Polynomial Identity”, J.Algebra 40, 245–257 (1976).
  5. Montgomery, S. Hopf Algebras and Their Actions on Rings (CBMS Reg. Conf. Ser. Math. 85, Amer. Math. Soc., 1993).
  6. Totok, A. A. “Action of Hopf Algebras”, Sbornik:Mathematics 189, No. 1, 147–157 (1998).
  7. Eryashkin, M. S. “Invariants and Rings of Quotients of H-Semiprime H-Module Algebra Satisfying a Polynomial Identity”, RussianMathematics (Iz. VUZ) 60, No. 5, 18–34 (2016).
  8. Etingof, P. “Galois Bimodules and Integrality of PI Comodule Algebras over Invariants”, J. of Noncommutative Geometry 9, No. 2, 567–602 (2015).
  9. Eryashkin, M. S. “Invariants of the Action of a Semisimple Finite-Dimensional Hopf Algebra on Special Algebras”, RussianMathematics (Iz. VUZ) 55, No. 8, 11–18 (2011).
  10. Eryashkin, M. S. “Martindale Rings and H-Module Algebras with Invariant Characteristic Polynomials”, SiberianMathematical Journal 53, No. 4, 659–671 (2012).
  11. Etingof, P., Walton, C. “Pointed Hopf Actions on Fields. I”, Transformation Groups 20, No. 4, 986–1013 (2015).
  12. Rowen, L. H. Polynomial Identities in Ring Theory (Academic Press, New York, 1980).
  13. Skryabin, S. M. “Structure of H-Semiprime Artinian Algebras”, Algebr. Represent. Theor., No. 14, 803–822 (2011).
  14. Braun, A. “The Nilpotency of the Radical in a Finitely Generated PI Ring”, J.Algebra 89, 375–396 (1984).
  15. Larson, R. G., Radford, D. E. “Semisimple Cosemisimple Hopf Algebras”, Amer. J.Math. 110, 187–195 (1988).
  16. Larson, R. G., Radford, D. E. “Finite Dimensional Cosemisimple Hopf Algebras in Characteristic 0 are Semisimple”, J. Algebra 117, 267–289 (1988).
  17. Larson, R. G. “Characters of Hopf Algebras”, J.Algebra 17, 352–368 (1971).
  18. Etingof, P., Gelaki, S. “On Finite-Dimensional Semisimple and Cosemisimple Hopf Algebras in Prime Characteristic”, Inter.Math. Research Notices 16, 851–864 (1998).
  19. Linchenko, V., Montgomery, S. “Semiprime Smash Products and H-Stable Prime Radicals for PIAlgebras”, Proc. Amer.Math. Soc. 135, No. 10, 3091–3098 (2007).
  20. Linchenko, V., Montgomery, S., Small, L. W. “Stable Jacobson Radicals and Semiprime Smash Products”, Bull. London Math. Soc. 37, 860–872 (2005).
  21. Montgomery, S., Schneider, H. J. “Prime Ideals in Hopf Galois Extensions”, Israel J. Math. 112, No. 1, 187–235 (1999)
  22. Braun, A., Vonessen, N. “Integrality for PI-Rings”, J. Algebra, 151, 39–79 (1992).