Статья
2018

Effect of the Composition and Structure of Pt(Cu)/C Electrocatalysts on Their Stability under Different Stress Test Conditions


E. A. Moguchikh E. A. Moguchikh , A. A. Alekseenko A. A. Alekseenko , V. E. Guterman V. E. Guterman , N. M. Novikovsky N. M. Novikovsky , N. Yu. Tabachkova N. Yu. Tabachkova , V. S. Menshchikov V. S. Menshchikov
Российский электрохимический журнал
https://doi.org/10.1134/S102319351813030X
Abstract / Full Text

Stability is one of the most important characteristics of electrocatalysts used in low-temperature fuel cells with a proton exchange membrane. The corrosion-morphological stability of supported electrocatalysts containing platinum and platinum-copper nanoparticles with ~20 wt % Pt was evaluated under the conditions of voltammetry stress testing corresponding to different degradation mechanisms. The effect of the difference in the architecture of Pt–Cu nanoparticles on the stability of catalysts and changes in their composition as a result of stress tests were studied. At close values of the electrochemically active surface area (ECAS), the carbon-supported bimetallic catalysts demonstrated significantly higher stability compared to the commercial Pt/C catalysts. The Pt(Cu)/C catalyst obtained by sequential deposition of copper and platinum showed the highest resistance to the degradation and selective dissolution of copper during the testing.

Author information
  • Faculty of Chemistry, Southern Federal University, Rostov-on-Don, 344090, Russia

    E. A. Moguchikh, A. A. Alekseenko, V. E. Guterman, N. M. Novikovsky & V. S. Menshchikov

  • National University of Science and Technology MISiS, Moscow, 119991, Russia

    N. Yu. Tabachkova

References
  1. Holton, O.T. and Stevenson, J.W., The Role of Platinum in Proton Exchange Membrane Fuel Cells, Platinum Met. Rev., 2013, vol. 57, p. 259.
  2. Singh, R.N., Awasthi, R., and Sharma, C.S., Review: An overview of recent development of platinum-based cathode materials for direct methanol fuel cells, Int. J. Electrochem. Sci., 2014, vol. 9, p. 5607.
  3. Yaroslavtsev, A.B., Dobrovolsky, Yu.A., Shaglaeva, N.S., Frolova, L.A., Gerasimova, E.V., and Sanginov, E.A., Nanostructured materials for low-temperature fuel cells, Russ. Chem. Rev., 2012, vol. 81, p. 191.
  4. Borup, R., Meyers, J., Pivovar, B., Kim, Yu.S., Mukundan, R., Garland, N., Myers, D., Wilson, M., Garzon, F., and Wood, D., More scientific aspects of polymer electrolyte fuel cell durability and degradation, Chem. Rev., 2007, vol. 107, p. 3904.
  5. Katsounaros, I., Cherevko, S., Zeradjanin, A.R., and Mayrhofer, K.J.J., Oxygen electrochemistry as a cornerstone for sustainable energy conversion, Angew. Chem. Int. Ed., 2014, vol. 53, p. 102.
  6. Jung, N., Chung, D.Y., Ryu, J., Yoo, S.J., and Sung, Y.-E., Pt-based nanoarchitecture and catalyst design for fuel cell applications, Nano Today, 2014, vol. 9, p. 433.
  7. Stamenkovic, V., Schmidt, T.J., Ross, P.N., and Markovic, N.M., Surface composition effects in electrocatalysis: kinetics of oxygen reduction on well-defined Pt3Ni and Pt3Co alloy surfaces, J. Phys. Chem. B, 2002, vol. 106, p. 11970.
  8. Pavlov, V.I., Gerasimova, E.V., Zolotukhina, E.V., Dobrovolsky, Y.A., Don, G.M., and Yaroslavtsev, A.B., Degradation of Pt/C electrocatalysts having different morphology in low-temperature PEM fuel cells, Nanotechnologies in Russia, 2016, vol. 11, p. 743.
  9. Meier, J.C., Galeano, C., Katsounaros, I., Witte, J., Bongard, H.J., Topalov, A.A., Baldizzone, C., Mezzavilla, S., Schüth, F., and Mayrhofer, K.J.J., Design criteria for stable Pt/C fuel cell catalysts, Beilstein J. Nanotechnol., 2014, vol. 5, p. 44.
  10. Yano, H., Watanabea, M., Iiyamaa, A., and Uchida, H., Particle-size effect of Pt cathode catalysts on durability in fuel cells, Nano Energy, 2016, vol. 29, p. 323.
  11. Holby, E.F., Sheng, W., Shao-Horn, Y., and Morgan, D., Pt nanoparticle stability in PEM fuel cells: influence of particle size distribution and crossover hydrogen, Energy Environ. Sci., 2009, vol. 2, p. 865.
  12. Hasche, F., Oezaslan, M., and Strasser, P., Activity, stability, and degradation mechanisms of dealloyed PtCu3 and PtCo3 nanoparticle fuel cell catalysts, Chem-CatChem., 2011, vol. 3, p. 1805.
  13. Guterman, V.E., Belenov, S.V., Alekseenko, A.A., Tabachkova, N.Yu., and Volochaev, V.A., The relationship between activity and stability of deposited platinum–carbon electrocatalysts, Russ. J. Electrochem., 2017, vol. 53, p. 531.
  14. Park, Yu.-Ch., Kakinuma, K., Uchida, M., Uchida, H., and Watanabe M., Deleterious effects of interim cyclic voltammetry on Pt/carbon black catalyst degradation during start-up/shutdown cycling evaluation, Electrochim. Acta, 2014, vol. 123, p. 84.
  15. Antolini, E., Salgado, J.R.C., and Gonzalez, E.R., The stability of Pt–M (M = first row transition metal) alloy catalysts and its effect on the activity in low temperature fuel cells: A literature review and tests on a Pt–Co catalyst, J. Power Sources, 2006, vol. 160, p. 957.
  16. Cherevko, S., Kulyk, N., and Mayrhofer, K.J.J., Durability of platinum-based fuel cell electrocatalysts: Dissolution of bulk and nanoscale platinum, Nano Energy, 2016, vol. 29, p. 275.
  17. Stamenkovic, V.R., Mun, S.B., Mayrhofer, K.J.J., Ross, Ph.N., and Markovic, N.M., Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: ptskin versus pt-skeleton surfaces, J. Am. Chem. Soc., 2006, vol. 128, p. 8813.
  18. Hasché, F., Oezaslan, M., and Strasser, P., Activity, stability and degradation of multi walled carbon nanotube (MWCNT) supported Pt fuel cell electrocatalysts, Phys. Chem. Chem. Phys., 2010, vol. 12, p. 15251.
  19. Capelo, A., Esteves, M.A., Sa, A.I., Silva, R.A., Cangueiro, L., Almeida, A., Vilar, R., and Rangel, C.M., Stability and durability under potential cycling of Pt/C catalyst with new surface-functionalized carbon support, Int. J. Hydrogen Energy, 2016, vol. 41, p. 12962.
  20. Baschuk, J.J. and Li, X., Carbon monoxide poisoning of proton exchange membrane fuel cells, Int. J. Energy Res., 2001, vol. 25, p. 695.
  21. Yan, W-M., Chu, H., Lu, M-X., Weng, F-B., Jung, G.-B., and Lee, Ch., Degradation of proton exchange membrane fuel cells due to CO and CO2 poisoning, J. Power Sources, 2009, vol. 188, p. 141.
  22. Zhang, Y., Chen, S., Wang, Y., Ding, W., Wu, R., Li, L., Qi, X., and Wei, Z., Study of the degradation mechanisms of carbon-supported platinum fuel cells catalyst via different accelerated stress test, J. Power Sources, 2015, vol. 273, p. 62.
  23. Ohma, A., Shinohara, K., Iiyama, A., Yoshida, T., and Daimaru, A., Fuel cells by FCCJ membrane, catalyst, MEA WG membrane and catalyst performance targets for automotive, ECS Trans., 2011, vol. 41, p. 775.
  24. Hodnik, N., Jozinovic, B., Zorko, M., and Gaberscek, M., Stability of commercial Pt/C low temperature fuel cell catalyst: electrochemical IL-SEM study, Acta Chim. Slov., 2014, vol. 61, p. 280.
  25. Kim, G.H., Cheon, J.Y., Shin, T.J., Park, J.Y., and Joo, S.H., Effect of surface oxygen functionalization of carbon support on the activity and durability of Pt/C catalysts for the oxygen reduction reaction, Carbon, 2016, vol. 101, p. 449.
  26. Riese, A., Banham, D., Ye, S., and Sun X., Accelerated stress testing by rotating disk electrode for carbon corrosion in fuel cell catalyst supports, J. Electrochem. Soc., 2015, vol. 162, p. F783.
  27. Sui, Sh., Wang, X., Zhou, X., Suc, Yu., Riffatc S., and Liu, Ch., A comprehensive review of Pt electrocatalysts for oxygen reduction reaction: nanostructure, activity, mechanism and carbon support in PEM fuel cells, J. Mater. Chem. A, 2017, vol. 5, p. 1808.
  28. Sharma, S. and Pollet, B.G., Support materials for PEMFC and DMFC electrocatalysts, J. Power Sources, 2012, vol. 208, p. 96.
  29. Shao, Y., Yin, G., and Gao Y., Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell, J. Power Sources, 2007, vol. 171, p. 558.
  30. Alekseenko, A.A., Belenov, S.V., Volochaev, V.A., Novomlinskiy, I.N., and Guterman, V.E., Cu@Pt/C catalysts: synthesis, structure, activity in oxygen reduction reaction, Condens. Matter Interphases, 2016, vol. 18, p. 460.
  31. Kirakosyan, S.A., Alekseenko, A.A., Guterman, V.E., Volochaev, V.A., and Tabachkova, N.Yu., Effect of CO atmosphere on morphology and electrochemically active surface area in the synthesis of Pt/C and Pt–Ag/C electrocatalysts, Nanotechnol. Russ., 2016, vol. 11, p. 287.
  32. Perez, J., Paganin, V.A., and Antolini, E. Particle size effect for ethanol electro-oxidation on Pt/C catalysts in half-cell and in a single direct ethanol fuel cell, J. Electroanal. Chem., 2011, vol. 654, p. 108.
  33. Chiang, Y-Ch., Liang, Ch-Ch., and Chung, Ch-P., Characterization of platinum nanoparticles deposited on functionalized graphene sheets, Materials, 2015, vol. 8, p. 6484.
  34. Zhu, H., Li, X., and Wang, F., Synthesis and characterization of Cu@Pt/C core-shell structured catalysts for proton exchange membrane fuel cell, Int. J. Hydrogen Energy, 2011, vol. 36, p. 9151.
  35. Pryadchenko, V.V., Srabionyan, V.V., Belenov, S.V., Volochaev, V.A., Kurzin, A.A., Avakyan, L.A., Zizak, I., Guterman, V.E., and Bugaev, L.A., Bimetallic PtCu nanoparticles in PtCu/C electrocatalysts: structural and electrochemical characterization, Appl. Catal. A, 2016, vol. 525, p. 226.
  36. Alekseenko, A.A., Belenov, S.V., Volochaev, V.A., Novomlinskiy, I.N., and Guterman, V.E., Cu@Pt/C catalysts: synthesis, structure, activity in oxygen reduction reaction, Advanced Materials: Techniques, Physics, Mechanics and Applications, Springer Proc. Phys., Parinov, I.A., S.-H. Chang, and M. Jani, Eds., Heidelberg: Springer, 2017, vol. 193.
  37. Leontyev, I.N., Leontyeva, D.V., Kuriganova, A.B., Popov, Y.V., Maslova, O.A., Glebova, N.V., Nechitailov, A.A., Zelenina, N.K., Tomasov, A.A., Hennet, L., and Smirnova, N.V., Characterization of the electrocatalytic activity of carbon-supported platinum-based catalysts by thermal gravimetric analysis, Mendeleev Commun., 2015, vol. 25, p. 468.
  38. Inaba, M., Ito, H., Tsuji, H., Wada, T., Banno, M., and Yamada, H., Effect of core size on activity and durability of Pt core–shell catalysts for PEFCs, ECS Trans., 2010, vol. 33, p. 231.
  39. Guterman, V.E., Belenov, S.V., Alekseenko, A.A., Rui Lin, Tabachkova, N.Yu., and Safronenko, O.I., Activity and Stability of Pt/C and Pt–Cu/C Electrocatalysts, Electrocatalysis, 2018, vol. 9, p. 550.