Voltammetric, FTIR Spectroscopic and Thermal Analysis Studies on Adduct Formations of Rifampicin with Soft Nucleophiles Cysteine and Glutathione

E. Biçer E. Biçer , V. Pehlivan V. Pehlivan
Российский электрохимический журнал
Abstract / Full Text

In the present study, the adduct formation equilibria of rifampicin (RIF) with cysteine (CySH) and glutathione (GSH) at different pHs were investigated using cyclic and square-wave voltammetry techniques. With increasing RIF concentration, the reduction currents of mercurous thiolates (Hg2(RS)2) which are main surface products for CySH and GSH on Hg electrode decrease drastically and their reduction potentials shifted towards less negative values due to intermolecular interactions. At the same time, the voltammetric signals (especially the Epa and Epc values of reversible redox process of the α-hydrojuglone moiety) of RIF shifted towards positive values in the presence of CySH or GSH. A plausible mechanism is proposed to explain the formations of some adducts by means of this interaction process. That is that CySH and GSH behave as nucleophile and undergo the addition reaction with RIF. The formation of adducts was also confirmed by FTIR measurements and could be clarified by the disappearance of the stretching band of free thiol group. The stoichiometric ratio of this reaction was found to be 1 : 1 and the binding constants were evaluated using the experimental data of square-wave voltammetry. The pH effect on binding constant was studied by varying pH (4.5, 7.4, 9.0). It was found that the reaction was strongly influenced by the pH. This nucleophilic addition reaction was mostly suitable at pH 9. Also, the constant of the addition reaction of GSH is higher than that of CySH for all studied pHs. The thermal behaviours of these adducts were characterized by thermal analysis techniques (TGA/DrTGA/DTA). Since the thermograms recorded for adducts are not an overlapping of thermal curves of starting materials, this behaviour has been considered a further proof for the formation of adducts.

Author information
  • Department of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139, Atakum-Samsun, Turkey

    E. Biçer & V. Pehlivan

  1. Basu, S., Majumder, S., Chatterjee, S., Ganguly, A., Efferth, T., and Choudhuri, S.K., Detection and characterization of a glutathione conjugate of a novel copper complex, In Vivo, 2009, vol. 23, p. 401.
  2. Meister, A. and Anderson, M.E., Glutathione, Annu. Rev. Biochem., 1983, vol. 52, p. 711. https://doi.org/10.1146/annurev.bi.52.070183.003431
  3. Tew, K.D., Glutathione-associated enzymes in anticancer drug resistance, Cancer Res., 1994, vol. 54, p. 4313.
  4. Sharma, R., Awasthi, S., Zimniak, P., and Awasthi, Y.C., Transport of glutathione-conjugates in human erythrocytes, Acta Biochim. Pol., 2000, vol. 47, p. 751.
  5. Létourneau, I.J., Nakajima, A., Deeley, R.G., and Cole, S.P.C., Role of proline 1150 in functional interactions between the membrane spanning domains and nucleotide binding domains of the MRP1 (ABCC1) transporter, Biochem. Pharmacol., 2008, vol. 75, p. 1659. https://doi.org/10.1016/j.bcp.2008.01.009
  6. Kosower, N.S. and Kosower, E.M., The glutathione status of cells, Int. Rev. Cytol., 1978, vol. 54, p. 109. https://doi.org/10.1016/S0074-7696(08)60166-7
  7. Lee, P.T., Thomson, J.E., Karina, A., Salter, C., Johnston, C., Davies, S.G., and Compton, R.G., Selective electrochemical determination of cysteine with a cyclotricatechylene modified carbon electrode, Analyst, 2015, vol. 140, p. 236. https://doi.org/10.1039/C4AN01835D
  8. White, P.C., Lawrence, N.S., Davis, J., and Compton, R.G., Electrochemical determination of thiols: a perspective, Electroanalysis, 2002, vol. 14, p. 89. https://doi.org/10.1002/1521-4109(200201)14:2<89::AID-ELAN89>3.0.CO;2-Y
  9. White, P.C., Lawrence, N.S., Davis, J., and Compton, R.G., Electrochemically initiated 1,4 additions: a versatile route to the determination of thiols, Anal. Chim. Acta, 2001, vol. 447, p. 1. https://doi.org/10.1016/S0003-2670(01)01297-1
  10. Nadejde, C., Ursu, L., Creanga, D., and Dorohoi, D., Solvatochromic behaviour of rifampicin in diluted solutions, Rev. Chim. (Bucharest), 2015, vol. 66, p. 360.
  11. Ferreira, D.A., Ferreira, A.G., Vizzotto, L., Neto, A.F., and Oliveira, A.G., Analysis of the molecular association of rifampicin with hydroxypropyl-β-cyclodextrin, Rev. Bras. Cienc. Farm., 2004, vol. 40, p. 43. https://doi.org/10.1590/S1516-93322004000100008
  12. Chauhan, S., Singh, K., Kumar, K., Neelakantan, S.C., and Kumar, G., Drug-amino acid interactions in aqueous medium: volumetric, compressibility, and viscometric studies, J. Chem. Eng. Data, 2016, vol. 61, p. 788. https://doi.org/10.1021/acs.jced.5b00549
  13. Chauhan, S., Chaudhary, P., Sharma, K., Kumar, K., and Kiran, Temperature-dependent volumetric and viscometric properties of amino acids in aqueous solutions of an antibiotic drug, Chem. Pap., 2013, vol. 67, p. 1442. https://doi.org/10.2478/s11696-013-0404-y
  14. Pal, A. and Chauhan, N., Interactions of amino acids and peptides with the drug pentoxifylline in aqueous solution at various temperatures: a volumetric approach, J. Chem. Thermodyn., 2012, vol. 54, p. 288. https://doi.org/10.1016/j.jct.2012.05.009
  15. Kumar, H. and Kaur, K., Interaction of antibacterial drug ampicillin with glycine and its dipeptides analyzed by volumetric and acoustic methods at different temperatures, Thermochim. Acta, 2013, vol. 551, p. 40. https://doi.org/10.1016/j.tca.2012.10.018
  16. Kamat, B.P. and Seetharamappa, J., Mechanism of interaction of vincristine sulphate and rifampicin with bovine serum albumin: a spectroscopic study, J. Chem. Sci., 2005, vol. 117, p. 649. https://doi.org/10.1007/BF02708294
  17. Yu, O.-Y., Cheng, Y.-F., Huang, S.-Y., Bai, A.-M., and Hu, Y.-J., Probing the binding of rifampicin to bovine serum albumin in aqueous solution, J. Solution Chem., 2011, vol. 40, p. 1711. https://doi.org/10.1007/s10953-011-9747-6
  18. Sharifi, M., Dolatabadi, J.E.N., Fathi, F., Rashidi, M., Jafari, B., Tajalli, H., and Rashidi, M.-R., Kinetic and thermodynamic study of bovine serum albumin interaction with rifampicin using surface plasmon resonance and molecular docking methods, J. Biomed. Opt., 2017, vol. 22, p. 037002. https://doi.org/10.1117/1.JBO.22.3.037002
  19. Assandri, A. and Semenza, G., Protein binding of rifampicin to bovine serum albumin as measured by gel filtration, J. Chromatogr., 1977, vol. 135, p. 25. https://doi.org/10.1016/S0021-9673(00)86298-6
  20. Boman, G. and Ringberger, V.-A., Binding of rifampicin by human plasma proteins, Europ. J. Clin. Pharmacol., 1974, vol. 7, p. 369. https://doi.org/10.1007/BF00558209
  21. Polasa, K. and Krishnaswamy, K., In vitro studies on protein binding of rifampicin, Indian J. Pharmac., 1987, vol. 19, p. 225.
  22. Chen, X.-B., Kang, D.-G., Li, S., Zhao, C.-Y., Chen, X.-S., and Ding, H.-P., Fluorescence spectroscopy study of human serum albumin quenched by rifampicin capsules, Guang Pu Xue Yu Guang Pu Fen Xi/Spectrosc. Spect. Anal., 2006, vol. 26, p. 674.
  23. Lachau, S., Rochas, M.A., Tufenkji, A.E., Martin, N., Levillain, P., and Houin, G., First-derivative spectroscopic determination of binding characteristics of rifampicin to human albumin and serum, J. Pharm. Sci., 1992, vol. 81, p. 287. https://doi.org/10.1002/jps.2600810319
  24. Scotti, L., de Oliveira Lima, E., da Silva, M.S., Ishiki, H., de Oliveira Lima, I., de Oliveira Pereira, F., Junior, F.J.B.M., and Scotti, M.T., Docking and PLS studies on a set of thiophenes RNA polymerase inhibitors against Staphylococcus aureus, Curr. Top. Med. Chem., 2014, vol. 14, p. 64. https://doi.org/10.2174/1568026613666131113151347
  25. Selvaraj, S., Ramanathan, R., Vasudevaraja, V., Rajan, K.S., Krishnaswamy, S., Pemiah, B., Sethuraman, S., Ramakrishnan, V., and Krishnan, U.M., Transcriptional regulation of the pregnane-X receptor by the Ayurvedic formulation Chandraprabha Vati, RSC Adv., 2014, vol. 4, p. 64967. https://doi.org/10.1039/C4RA13553A
  26. Murthy, N.V.S.V., Sastry, V.G., and Basha, S.H., 3,5‑dinitrophenyl clubbed azoles against latent tuberculosis- a theoretical mechanistic study, J. Peer Sci., 2018, vol. 1, e1000001. https://doi.org/10.5281/zenodo.3371841
  27. Lawrence, N.S., Davis, J., and Compton, R.G., Electrochemical detection of thiols in biological media, Talanta, 2001, vol. 53, p. 1089. https://doi.org/10.1016/S0039-9140(00)00579-8
  28. White, P.C., Lawrence, N.S., Tsai, Y.C., Davis, J., and Compton, R.G., Electrochemically driven derivatisation-detection of cysteine, Microchim. Acta, 2001, vol. 137, p. 87. https://doi.org/10.1007/s006040170033
  29. Hignett, G., Threlfell, S., Wain, A.J., Lawrence, N.S., Wilkins, S.J., Davis, J., Compton, R.G., and Cardosi, M.F., Electroanalytical exploitation of quinone-thiol interactions: application to the selective determination of cysteine, Analyst, 2001, vol. 126, p. 353. https://doi.org/10.1039/b008616i
  30. Biçer, E. and Özdemir, N., In vitro study of the interaction of cysteine with a thiazide diuretic (hydrochlorothiazide) at different pH by voltammetric and spectroscopic techniques, Russ. J. Electrochem., 2013, vol. 49, p. 948. https://doi.org/10.1134/S1023193513100042
  31. Biçer, E. and Çınar, E., Voltammetric and spectroscopic studies on the interaction of pentoxifylline with cysteine in the presence and absence of UV irradiation, Z. Phys. Chem., 2005, vol. 219, p. 817. https://doi.org/10.1524/zpch.219.6.817.65709
  32. Biçer, E. and Çetinkaya, P., A voltammetric study on the interaction of novobiocin with cysteine: pH effect, J. Chil. Chem. Soc., 2009, vol. 54, p. 46. https://doi.org/10.4067/S0717-97072009000100011
  33. Omanović, D. and Branica, M., Automation of voltammetric measurements by polarographic analyser PAR 384B, Croat. Chem. Acta, 1998, vol. 71, p. 421.
  34. Hahn, Y. and Shin, S., Electrochemical behavior and differential pulse polarographic determination of rifampicin in the pharmaceutical preparations, Arch. Pharm. Res., 2001, vol. 24, p. 100. https://doi.org/10.1007/BF02976475
  35. Biçer, E. and Özdemir, S., Voltammetric and spectroscopic studies on the interaction of anti-cancer herbal drug rutin with an anti-tuberculosis agent rifampicin, Russ. J. Electrochem., 2010, vol. 46, p. 896. https://doi.org/10.1134/S1023193510080069
  36. Leandro, K.C., de Carvalho, J.M., Giovanelli, L.F., and Moreira, J.C., Development and validation of an electroanalytical methodology for determination of isoniazid and rifampicin content in pharmaceutical formulations, Braz. J. Pharm. Sci., 2009, vol. 45, p. 331. https://doi.org/10.1590/S1984-82502009000200019
  37. Asadpour-Zeynali, K. and Soheili-Azad, P., Simultaneous polarographic determination of isoniazid and rifampicin by differential pulse polarography method and support vector regression, Electrochim. Acta, 2010, vol. 55, p. 6570. https://doi.org/10.1016/j.electacta.2010.06.018
  38. Latypova, L.Z., Yanilkin, V.V., Kurbangalieva, A.R., Berdnikov, E.A., and Chmutova, G.A., Electrochemical reduction of mucochloric acid and its 5-alkoxy derivatives, Russ. Chem. Bull., 2012, vol. 61, p. 568. https://doi.org/10.1007/s11172-012-0083-9
  39. Sulaiman, S.T. and Razzak, F.H.A., Differential-pulse polarographic determination of doxycycline in serum and urine, Rafidain J. Sci., 2008, vol. 19, p. 52.
  40. Zbačnik, M. and Kaitner, B., Supramolecular influence on keto-enol tautomerism and thermochromic properties of o-hydroxy Schiff bases, Croat. Chem. Acta, 2016, vol. 89, p. 125. https://doi.org/10.5562/cca2881
  41. Jovanović, Lj.S., Electrochemistry of vitamin b6 vitamers, their derivatives and metal complexes, in Proc. 8th Int. Conf. on Fundamental and Applied Aspects of Physical ChemistryPhysical Chemistry 2006”, Antić-Jovanović, A., Ed., 2006, paper no. E–2–SL, p. 292.
  42. Xu, L., Xiao, Y., Xu, Q., van Sandwijk, A., Li, J., Zhao, Z., Song, Q., and Yang, Y., Electrochemical behavior of zirconium in molten LiF–KF–ZrF4 at 600°C, RSC Adv., 2016, vol. 6, p. 84472. https://doi.org/10.1039/C6RA17102H
  43. Noori, J.S., Dimaki, M., Mortensen, J., and Svendsen, W.E., Detection of glyphosate in drinking water: a fast and direct detection method without sample pretreatment, Sensors, 2018, vol. 18, p. 2961.
  44. Jain, R., Tiwari, D.C., and Karolia, P., Highly sensitive and selective polyaniline-zinc oxide nanocomposite sensor for betahistine hydrochloride in solubilized system, J. Mol. Liq., 2014, vol. 196, p. 308. https://doi.org/10.1016/j.molliq.2014.03.048
  45. Amidi, S., Hosseinzadeh Ardakani, Y., Amiri-Aref, M., Ranjbari, E., Sepehri, Z., and Bagheri, H., Sensitive electrochemical determination of rifampicin using gold nanoparticles/poly-melamine nanocomposite, RSC Adv., 2017, vol. 7, p. 40111. https://doi.org/10.1039/C7RA04865C
  46. Kawde, A.-N., Temerk, Y., and Farhan, N., Adsorptive stripping voltammetry of antibiotics rifamycin SV and rifampicin at renewable pencil electrodes, Acta Chim. Slov., 2014, vol. 61, p. 398.
  47. Tokunaga, T., Takada, N., and Ueda, M., Mechanism of antifeedant activity of plumbagin, a compound concerning the chemical defense in carnivorous plant, Tetrahedron Lett., 2004, vol. 45, p. 7115. https://doi.org/10.1016/j.tetlet.2004.07.094
  48. Michelitsch, A., Wurglics, M., Schubert-Zsilavecz, M., and Likussar, W., Determination of 5-hydroxynaphthoquinones in phytotherapeutic drosera preparations by differential pulse polarography, Phytochem. Anal., 1999, vol. 10, p. 64. https://doi.org/10.1002/(SICI)1099-1565(199903/04)10:2<64::AID-PCA434>3.0.CO;2-T
  49. Perrin, C.L., Mechanisms of organic polarography, in Organic Polarography, Zuman, P. and Perrin, C.L., Eds., New York: John Wiley & Sons, 1969, pp. 197–198.
  50. Munir, S., Shah, A., Rauf, A., Badshah, A., Hussain, H., Zia-ur-Rehman, and Ahmad, Z., Redox behavior of juglone in buffered aq.: ethanol media, C.R. Chim., 2013, vol. 16, p. 1140. https://doi.org/10.1016/j.crci.2013.04.011
  51. Pietrzykowski, A.D., Oxidation-reduction couples bearing chelating groups, Ph.D. Thesis, Iowa State Univ. of Science and Technology, 1963, p. 77.
  52. Heyrovský, M. and Vavřička, S., Adsorption effects of electroactive species in d.c. polarography demonstrated in the case of the anodic waves of cysteine, J. Electroanal. Chem., 1997, vol. 423, pp. 125–130. https://doi.org/10.1016/S0022-0728(96)04691-8
  53. Heyrovský, M., Mader, P., Vavřička, S., Veselá, V., and Fedurco, M., The anodic reactions at mercury electrodes due to cysteine, J. Electroanal. Chem., 1997, vol. 430, p. 103. https://doi.org/10.1016/S0022-0728(97)00103-4
  54. Jin, W., Zhao, X., and Xiao, L., Mechanism of the electrochemical reaction of glutathione at a mercury electrode, Electroanalysis, 2000, vol. 12, p. 858. https://doi.org/10.1002/1521-4109(200007)12:11<858::AID-ELAN858>3.0.CO;2-1
  55. Fang, C. and Zhou, X., Electrochemical properties of glutathione monolayer on mercury surface, Electroanalysis, 2002, vol. 14, p. 711. https://doi.org/10.1002/1521-4109(200205)14:10<711::AID-ELAN711>3.0.CO;2-7
  56. Heyrovský, M. and Proková, B., Heterogeneous physico-chemical interactions following electrode reaction: Interaction of folates with thiols, Collect. Czech. Chem. Commun., 1997, vol. 62, p. 172. https://doi.org/10.1135/cccc19970172
  57. Proková, B. and Heyrovský, M., Voltammetric evidence of interfacial interactions between folates and thiols, Bioelectroch. Bioener., 1996, vol. 41, p. 209. https://doi.org/10.1016/S0302-4598(96)05099-4
  58. Oliveira-Brett, A.M., Goulart, M.O.F., and Abreu, F.C., Reduction of lapachones and their reaction with L-cysteine and mercaptoethanol on glassy carbon electrodes, Bioelectrochemistry, 2002, vol. 56, p. 53. https://doi.org/10.1016/S1567-5394(02)00011-7
  59. Esterbauer, H., Zollner, H., and Scholz, N., Reaction of glutathione with conjugated carbonyls, Z. Naturforsch. C, 1975, vol. 30, p. 466. https://doi.org/10.1515/znc-1975-7-808
  60. Demetrescu, I., Dumitriu, C., Totea, G., Nica, C.I., Dinischiotu, A., and Ionita, D., Zwitterionic cysteine drug coating influence in functionalization of implantable Ti50Zr alloy for antibacterial, biocompatibility and stability properties, Pharmaceutics, 2018, vol. 10, p. 220. https://doi.org/10.3390/pharmaceutics10040220
  61. Biçer, E. and Nuertayi, P., Voltammetric, spectroscopic and thermal investigations of the interaction of levofloxacin with cysteine at physiological pH, Russ. J. Electrochem., 2017, vol. 53, p. 469. https://doi.org/10.1134/S1023193517050044
  62. Singh, B.K., Mishra, P., and Garg, B.S., Nickel(II) complexes of biologically active glutathione: spectroscopic, kinetics of thermal decomposition and XRPD studies, Spectrochim. Acta A, 2007, vol. 67, p. 719. https://doi.org/10.1016/j.saa.2006.08.024
  63. Li, L., Liao, L., Ding, Y., and Zeng, H., Dithizone-etched CdTe nanoparticles-based fluorescence sensor for the off-on detection of cadmium ion in aqueous media, RSC Adv., 2017, vol. 7, p. 10361. https://doi.org/10.1039/C6RA24971J
  64. Nagarjuna, R., Saifullah, M.S.M., and Ganesan, R., Oxygen insensitive thiol-ene photo-click chemistry for direct imprint lithography of oxides, RSC Adv., 2018, vol. 8, p. 11403. https://doi.org/10.1039/C8RA01688G
  65. Fuliaş, A., Vlase, G., Ledeti, I., and Şuta, L.-M., Ketoprofen-cysteine equimolar salt: synthesis, thermal analysis, PXRD and FTIR spectroscopy investigation, J. Therm. Anal. Calorim., 2015, vol. 121, p. 1087. https://doi.org/10.1007/s10973-015-4516-1
  66. Paukov, I.E., Kovalevskaya, Y.A., and Boldyreva, E.V., Low-temperature thermodynamic properties of DL-cysteine, J. Therm. Anal. Calorim., 2010, vol. 100, p. 295. https://doi.org/10.1007/s10973-009-0457-x
  67. Kamble, S.R., Molecular interactions in pharmaceutical preformulation and supramolecular complexes, PhD Thesis, Univ. of Bradford, 2018.
  68. Montenegro, L., Trapani, A., Fini, P., Mandracchia, D., Latrofa, A., Cioffi, N., Chiarantini, L., Picceri, G.G., Brundu, S., and Puglisi, G., Chitosan nanoparticles for topical co-administration of the antioxidants glutathione and idebenone: characterization and in vitro release, Br. J. Pharm. Res., 2014, vol. 4, p. 2387. https://doi.org/10.9734/bjpr/2014/8641
  69. Alobaidy, Z.A., Enhancing oral delivery of glutathione using chitosan nanoparticles, MSc Thesis, Amman: University of Petra, Faculty of Pharmacy and Medical Sciences, Dec. 2013, p. 36.
  70. Alanazi, A.M., Mostafa, G.A.E., and Al-Badr, A.A., Glutathione, in Profiles of Drug Substances, Excipients and Related Methodology, Brittain, H.G., Ed., 1st ed., Oxford: Acad. Press, 2015,vol. 40, chapter 2, pp. 43–158.
  71. Wonisch, W. and Schaur, R.J., Chemistry of glutathione, in Significance of Glutathione to Plant Adaptation to the Environment, Grill, D., Tausz, M.M., and de Kok, L.J., Eds., Dordrecht: Springer, 2001, chapter 2, p. 14.
  72. Henwood, S.Q., Liebenberg, W., Tiedt, L.R., Lotter, A.P., and de Villiers, M.M., Characterization of the solubility and dissolution properties of several new rifampicin polymorphs, solvates, and hydrates, Drug Dev. Ind. Pharm., 2001, vol. 27, p. 1017. https://doi.org/10.1081/DDC-100108364
  73. Bhise, S.B., More, A.B., and Malayandi, R., Formulation and in vitro evaluation of rifampicin loaded porous microspheres, Sci. Pharm., 2010, vol. 78, p. 291. https://doi.org/10.3797/scipharm.0910-09
  74. Alves, R., da Silva Reis, T.V., da Silva, L.C.C., Storpírtis, S., Mercuri, L.P., and do Rosário Matos, J., Thermal behavior and decomposition kinetics of rifampicin polymorphs under isothermal and non-isothermal conditions, Braz. J. Pharm. Sci., 2010, vol. 46, p. 343. https://doi.org/10.1590/S1984-82502010000200022
  75. Freire, F.D., Aragão, C.F.S., de Lima e Moura, T.F.A., and Raffin, F.N., Thermal studies of isoniazid and mixtures with rifampicin, J. Therm. Anal. Calorim., 2009, vol. 97, p. 333. https://doi.org/10.1007/s10973-009-0084-6
  76. Manna, B.R., Dey, S., Debnath, S., and Ghosh, U.C., Removal of arsenic from groundwater using crystalline hydrous ferric oxide (CHFO), Water Qual. Res. J. Can., 2003, vol. 38, p. 193. https://doi.org/10.2166/wqrj.2003.013
  77. Maldonado, C.S., De la Rosa, J.R., Lucio-Ortiz, C.J., Hernández-Ramírez, A., Barraza, F.F.C., and Valente, J.S., Low concentration Fe-doped alumina catalysts using sol-gel and impregnation methods: the synthesis, characterization and catalytic performance during the combustion of trichloroethylene, Materials, 2014, vol. 7, p. 2062. https://doi.org/10.3390/ma7032062
  78. Yao, X.R. and Zhang, L.Q., Polarographic Catalytic Wave Atlas, Bejing: Geology Publ. House, 1988, pp. 16–20.
  79. Li, N.Q. and Gao, X.X., fan ji pu cui hua bo de yan jiu. fan–lin suan yan ti xi zhong guo yang hua qing ji pu cui hua bo de yan jiu, Chin. J. Anal. Chem., 1973, vol. 2, p. 40.
  80. Gao, X.X. and Yao, X.R., Polarographic Catalytic Wave of the Element of Group Pt, Bejing: Science press, 1977.
  81. Li, Y.-Q., Guo, Y.-J., Li, X.-F., and Pan, J.-H., Electrochemical studies of determination of Basic Brown G and its interaction with cyclodextrins, Dyes Pigm., 2007, vol. 74, p. 67. https://doi.org/10.1016/j.dyepig.2006.01.012
  82. Mohandoss, S. and Stalin, T., Study on inclusion complex behaviours of L-tyrosine and β-cyclodextrin by cyclic voltammetric technique using glassy carbon electrode, Int. J. Adv. Res., 2013, vol. 1, p. 381.
  83. Mohandoss, S. and Stalin, T., Photochemical and computational studies of inclusion complexes between β-cyclodextrin and 1,2-dihydroxyanthraquinones, Photochem. Photobiol. Sci., 2017, vol. 16, p. 476. https://doi.org/10.1039/C6PP00285D
  84. Shehatta, I.S. and Ibrahim, M.S., Binding of anti-inflammatory drug indomethacin with cyclodextrin and DNA: solubility, spectroscopic, and voltammetric studies, Can. J. Chem., 2001, vol. 79, p. 1431. https://doi.org/10.1139/v01-105
  85. Ragazzon, G., Baroncini, M., Ceroni, P., Credi, A., and Venturi, M., Electrochemically controlled supramolecular switches and machines, in Comprehensive Supramolecular Chemistry II, Atwood, J.L., Gokel, G.W., and Barbour, L., Eds., London: Elsevier, 2017, vol. 2, p. 351.
  86. Rezaei-Zarchi, S., Javed, A., Mirjalili, H., Abarghouei, H.B., and Hashemizadeh, S.A., Characterization and electrochemical study of nano-composition based methylene blue- and riboflavin-nafion on the surface of gold electrode, Turk. J. Chem., 2009, vol. 33, p. 411.
  87. Arguelho, M.L.P.M., Alves, J.P.H., Stradiotto, N.R., Júnior, V.L., Pires, J.M., and Beatriz, A., Electrochemical and theoretical evaluation of the interaction between DNA and amodiaquine. Evidence of the guanine adduct formation, Quim. Nova, 2010, vol. 33, p. 1291. https://doi.org/10.1590/S0100-40422010000600014
  88. García-Beltrán, O., Santos, J.G., Fuentealba, S., De la Torre, P., Pavez, P., Mena, N., Nuñez, M.T., and Aliaga, M.E., Mechanism study of the thiol-addition reaction to benzothiazole derivative for sensing endogenous thiols, Tetrahedron Lett., 2015, vol. 56, p. 2437. https://doi.org/10.1016/j.tetlet.2015.03.083
  89. Andrade-Acuña, D., Santos, J.G., Tiznado, W., Cañete, Á., and Aliaga, M.E., Kinetic study on the aromatic nucleophilic substitution reaction of 3,6-dichloro-1,2,4,5-tetrazine by biothiols, J. Phys. Org. Chem., 2014, vol. 27, p. 670. https://doi.org/10.1002/poc.3316
  90. Bianchi, D.H.A. and Haenen, G.R.M.M., The paradoxical influence of the pKa on the reactivity of thiols and its biological relevance, in Maastricht Research Based Learning Project (MaRBLe) Research Papers: Biomedical and Health Sciences Research, 2014, vol. 2, p. 222. https://doi.org/10.26481/marble.2014.v2.316
  91. Wall, S.B., Oh, J.-Y., Diers, A.R., and Landar, A., Oxidative modification of proteins: an emerging mechanism of cell signaling, Front. Physiol., 2012, vol. 3, art. 369. https://doi.org/10.3389/fphys.2012.00369