Examples



mdbootstrap.com



 
Статья
2018

Transient Current for a Rotating Disk Electrodes Produced by a Potential Step


R. Saravanakumar R. Saravanakumar , P. Pirabaharan P. Pirabaharan , M. Muralikannan M. Muralikannan , L. Rajendran L. Rajendran
Российский электрохимический журнал
https://doi.org/10.1134/S1023193518120091
Abstract / Full Text

The non-steady state current of the rotating disk electrode for all time is presented in this manuscript for the first time. The model is based on the convection–diffusion equation with semi infinite boundary condition. The convection–diffusion equation is solved using the homotopy perturbation method, in conjunction with the Laplace transforms. Approximate analytical expressions for the concentration of the reactant and corresponding current for non-steady state conditions are derived. A two-point Padé approximant is proposed which is valid for entire time domain. The hitherto-known numerical and analytical solutions are compared with the present method.

Author information
  • Department of Mathematics, Anna University, University College of Engineering, Dindigul, 624622, India

    R. Saravanakumar & P. Pirabaharan

  • Department of Mathematics, Syed Ammal Engineering College, Ramanathapuram, 623502, India

    M. Muralikannan

  • Department of Mathematics, Academy of Maritime Education and Training (AMET), Deemed to be University, Chennai, 603112, India

    L. Rajendran

References
  1. Alden, J.A., Computational Electrochemistry, PhD Thesis, Oxford University, 1998, Ch. 1, p. 1.
  2. Melville, J.L. and Compton, R.G., J. Electroanal. Chem., 2001, vol. 501, p. 114.
  3. Levich, V.G., Acta Physicochim. URRS, 1942, vol. 17, p. 257.
  4. Levich, V.G., Physicochemical Hydrodynamics, Englewood Cliffs, NJ: Prentice Hall, 1962.
  5. Raymundo Navarrete, Determining the behaviour of the rotating disk electrode system, URA Projects, Department of Mathematics, Univ. of Arizona, 2009, p. 23.
  6. Scherson, D.A., Marconi, P.F., and Newman, J.S., On the short time solution for the concentration step at the surface of a rotating disk, J. Electrochem. Soc., 1980, vol. 127, p. 2603.
  7. Krylov, V.S. and Babak, V.N., Non-steady state diffusion to the surface of the rotating disk, Soviet Electrochem., 1971, vol. 7, p. 626.
  8. Santhangopalan, S. and White, R.E., J. Electrochem. Soc., 2004, vol. 151, no. 8, p. J50.
  9. Newman, J.S., Electrochemical Systems, Englewood Cliffs, NJ: Prentice Hall, 1973.
  10. Zhao, M. and Scherson, D.A., J. Electrochem. Soc., 1993, vol. 140, no. 3, p. 729.
  11. Sönke Schmachtel and Kyösti Kontturi, Transient solutions of potential steps at the rotating disc electrode with steady state initial concentration profiles for one electron transfer reactions, Electrochim. Acta, 2011, vol. 56, p. 6812–6823.
  12. Buck, R.P. and Keller, H.E., Chronopotentiometry at rotating disk electrodes, Anal. Chem., 1963, vol. 35, no. 3, pp. 400–402.
  13. Filiovskii, V.Yu. and Kiryanov, V.A., Contribution to the theory of non-stationary convective diffusion near a rotating disc electrode, Dokl. Phys. Chem., 1964, vol. 156, pp. 650–653.
  14. Bruckenstein, S. and Prager, S., Current transients at a rotating disk electrode produced by a potential step, Anal. Chem., 1967, vol. 39, no. 10, pp. 1161–1163.
  15. Nanis, L. and Klein, I., Transient mass transfer at a rotating disk electrode, J. Electrochem. Soc., 1972, vol. 119, no. 12, pp. 1683–1687.
  16. Nisanciolu, K. and Newmann, J., Transient convective diffusion to a disk electrode, J. Electroanal. Chem. Interfacial Electrochem., 1974, vol. 50, no. 1, pp. 23–29.
  17. Matson, S.L., Herrick, C.S., and Ward, W.J., Progress on the selective removal of H2S from gasified coal using an immobilized liquid membrane, Ind. Eng. Chem. Process Des. Dev., 1977, vol. 16, pp. 370–374.
  18. Goddard, J.D., Further applications of carrier-mediated transport theory–A survey, Chem. Eng. Sci., 1977, vol. 32, pp. 795–809.
  19. Diederich, F. and Dick, K., A new water-soluble macrocyclic host of the cyclophane type: Host–guest complexation with aromatic guests in aqueous solution and acceleration of the transport of arenes through an aqueous phase, J. Am. Chem. Soc., 1984, vol. 106, pp. 8024–8036.
  20. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, 2000, 2nd ed., ISBN: 978-0-471-04372-0.
  21. Albery, J., Electrode Kinetics, Oxford: Clarendon Press, 1975.
  22. Abramowitz, M. and Stegun, I.A., Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, Courier Corporation, 2012.
  23. Baker, G.A., Jr. and Graves-Morris, P., in Encyclopedia of Mathematics, Rota, G.C, Ed., vol. 13: Pade Approximants, part II, Addison-Wesley: Reading, MA, 1981, Ch. 1.
  24. Rajendran, L. and Sangaranarayanan, M.V., A two point Padé approximation for the non-steady state chonoamperometric current at ultramicrodisc electrodes, J. Elecroanal. Chem., 1995, vol. 392, pp. 75–78.
  25. Rajendran, L. and Sangaranarayanan, M.V., Chronoamperometric current at ultamicro spheriodal electrodes for steady state Ec' reaction—A two point Padé approximation, Indian J. Chem., Sect. A, 2000, vol. 39, pp. 356–363.
  26. Rajendran, L., A two point Padé approximation of mass transfer rate at microdisc electrodes in a channel flow for all peclet numbers, Electrochim. Acta, 2006, vol. 51, pp. 5407–5411.