Influence on the Energy of the Covalent Bond of the Isotopic Composition of its Nuclei

S. S. DzhimakS. S. Dzhimak, G. F. KopytovG. F. Kopytov, E. N. TumaevE. N. Tumaev, V. A. IsaevV. A. Isaev, A. V. MoiseevA. V. Moiseev, V. V. MalyshkoV. V. Malyshko, A. A. ElkinaA. A. Elkina, M. G. BaryshevM. G. Baryshev
Российский физический журнал
Abstract / Full Text

Based on the classical quantum-mechanical approach, the physical mechanism of isotope fractionation is proposed associated with the predominance of a certain number of neutrons among nucleons and explaining the nonequilibrium accumulation of certain stable isotope shapes of biogenic elements in heterogeneous systems. The effect may be due to the interaction of the magnetic moments of atomic nuclei and valence electrons leading to a change in the distance between them, including the influence of the changed distance between atoms, on the energy of the covalent link between the pairs of atoms.

Author information
  • Kuban State University, Krasnodar, RussiaS. S. Dzhimak, G. F. Kopytov, E. N. Tumaev, V. A. Isaev, A. A. Elkina & M. G. Baryshev
  • Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don, RussiaS. S. Dzhimak, V. V. Malyshko, A. A. Elkina & M. G. Baryshev
  • Kuban State Agrarian University, Krasnodar, RussiaA. V. Moiseev
  • Kuban State Medical University, Krasnodar, RussiaV. V. Malyshko
  1. S. Henkel, M. Ertelt, and W. Sander, Chemistry, 20, 7585–7588 (2014); https://doi.org/10.1002/chem.201402064.
  2. R. T. Howie, T. Scheler, C. Guillaume, and E. Gregoryanz, Phys. Rev. B, 86, 214104 (2012).
  3. L. M. Campos, M. V. Warrier, K. Peterfy, et al., J. Am. Chem. Soc., 127, 10178–10179 (2005); https://doi.org/10.1021/ja052487n.
  4. U. G. Letuta and V. L. Berdinskiy, Bioelectromagnetics, 2017, 38, 581–591 (2005).
  5. A. Basov, L. Fedulova, E. Vasilevskaya, et al., Molecules, 24, 4101 (2019); https://doi.org/10.3390/molecules24224101.
  6. A. Buchachenko, A. Bukhvostov, K. Ermakov, et al., Arch. Biochem. Biophys., 667, 30–35(2019).
  7. C. Ek, A. Garbaras, Z. Yu, et al., PLoS One, 14, e0211304 (2019).
  8. A. M. L. Karlson, M. Reutgard, A. Garbaras, et al., R. Soc. Open Sci., 5, 171398 (2018).
  9. S. S. Dzhimak, A. A. Basov, A. A. Elkina, et al., Jundishapur J. Nat. Pharm. Prod., 13, e69557 (2018); DOI: https://doi.org/10.5812/jjnpp.69557.
  10. X. Xie and R. A. Zubarev, Sci. Rep., 5, 9215 (2015); https://doi.org/10.1038/srep09215.
  11. L. V. Fedulova, A. A. Basov, E. R. Vasilevskaya, et al., Curr. Pharm. Biotechnol., 20, 245–253 (2019); https://doi.org/10.2174/1389201020666190222184814.
  12. A. G. Zuev, O. L. Rozanova, S. M. Tsurikov, et al., Biol. Bull., 46, 457–465 (2019).
  13. A. Basov, L. Fedulova, M. Baryshev, et al., Nutrients, 11, 1903 (2019); https://doi.org/10.3390/nu11081903.
  14. U.G. Letuta and D. M. Shailina, Dokl. Biochem. Biophys., 479, 111–113 (2018).
  15. A. A. Basov, S. V. Kozin, I. M. Bikov, et al., Biol. Bull., 46, 531–535 (2019); https://doi.org/10.1134/S1062359019060049.
  16. I. S. Petriev, S. N. Bolotin, V. Yu. Frolov, et al., Russ. Phys. J., 61, No. 10, 1894–1898 (2018).
  17. I. S. Petriev, S. N. Bolotin, V. Y. Frolov, et al., Bull. Russ. Acad. Sci.: Physics, 82, 807–810 (2018).
  18. A. Olgun, Theor. Biol. Med. Model., 4, 9 (2007); https://doi.org/10.1186/1742-4682-4-9.
  19. S. S. Dzhimak, M. I. Drobotenko, A. A. Basov, et al., Dokl. Biochem. Biophys., 483, 359–362 (2018); https://doi.org/10.1134/S1607672918060169.
  20. R. A. Zubarev, GPB, 9, 15–20 (2011).