Examples



mdbootstrap.com



 
Статья
2021

Adsorption of Lysozyme on Silica and Aluminosilicate Adsorbents


L. F. AtyakshevaL. F. Atyaksheva, O. S. PilipenkoO. S. Pilipenko, B. N. TarasevichB. N. Tarasevich
Российский журнал физической химии А
https://doi.org/10.1134/S0036024421010039
Abstract / Full Text

A study is performed of the adsorption of lysozyme on biporous silica, silicalite-1 (silica with the structure of MFI zeolite), ZSM-5 zeolite, and two halloysite samples (natural aluminosilicate nanotubes). Adsorption isotherms are obtained, and the limiting values of adsorption and the areas on surfaces of the adsorbent per enzyme molecule are found. The maximum adsorption per unit of adsorbent mass (350 mg/g) is obtained for biporous silica along with the one per unit of surface area (0.962 mg/m2) on halloysite.

Author information
  • Department of Chemistry, Moscow State University, 119991, Moscow, RussiaL. F. Atyaksheva, O. S. Pilipenko & B. N. Tarasevich
References
  1. D. P. Kharakoz and A. P. Sarvazzyan, Biopolymers 33, 11 (1993).
  2. B. Lee and F. M. Richards, J. Mol. Biol. 55, 379 (1971).
  3. S. Y. Lee, P. L. Show, C.-M. Ko, and J.-K. Chang, Biochem. Eng. J. 141, 210 (2019). https://doi.org/10.1016/j.bej.2018.10.116
  4. K. L. Avery, C. Peixoto, M. Barsellona, et al., Mater. Today Commun. 19, 352 (2019). https://doi.org/10.1016/j.mtcomm.2019.03.004
  5. V. Bugatti, A. Sorrentino, and G. Gorrasi, Eur. Polym. J., 495 (2017). https://doi.org/10.1016/j.eurpolymj.2017.06.24
  6. A. Vinu, V. Murugesan, and M. Hartmann, J. Phys. Chem. B 108, 7323 (2004). https://doi.org/10.1021/jp037303a
  7. X. Diao, Y. Wang, J. Zhao, and S. Zhu, Chin. J. Chem. Eng 18, 493 (2010). https://doi.org/10.1016/S1004-9541(10)60248-0
  8. A. Katiyar, L. Ji, P. Smirniotis, and N. G. Pinto, J. Chromatogr., A 1069, 119 (2005). https://doi.org/10.1016/j.chroma.2004.10.077
  9. S. M. L. Santos, J. A. Cecilia, E. Vilarrasa-García, et al., Microporous Mesoporous Mater. 232, 53 (2016). https://doi.org/10.1016/jmicromeso.2016.06.004
  10. F. E. Galdino, A. S. Picco, M. L. Sforca, et al., Colloid Surf., B: Biointerfaces 186, 110677 (2020). https://doi.org/10.1016/j.colsurfb.2019.110677
  11. O. S. Pilipenko, L. F. Atyaksheva, E. V. Kryuchkova, and E. S. Chukhrai, J. Phys. Chem. A 86, 1401 (2012). https://doi.org/10.1134/S0036024412080109
  12. M. Tortajada, D. Ramon, D. Beltran, and P. Amoros, J. Mater. Chem. 15, 3859 (2005). https://doi.org/10.1039/b504605j
  13. X. Yang, Z.-X. Liao, Y.-X. Li, and L. Du, Microporous Mesoporous Mater. 143, 263 (2011). https://doi.org/10.1016/jmicromeso.2011.02.027
  14. J. Li, N. Fan, X. Wang, and Z. He, Mater. Sci. Eng. C 76, 509 (2017). https://doi.org/10.1016/jmsec.2017.03.096
  15. Y.-K. Chang, R.-Z. Hiang, S.-Y. Lin, et al., Biochem. Eng. J. 28, 1 (2006). https://doi.org/10.1016/j.bej.2005.08.029
  16. M. Matsui, Y. Kiyouzumi, Y. Mizushina, et al., Sep. Purif. Technol. 149, 103 (2015). https://doi.org/10.1016/j.seppur.2015.05.023
  17. B. Enayatpour, M. Rajabi, O. Moradi, et al., J. Mol. Liq. 254, 93 (2018). https://doi.org/10.1016/j.molliq.2018.01/079
  18. L. F. Atyaksheva, I. V. Dobryakova, I. I. Ivanova, E. E. Knyazeva, R. A. Ovsyannikov, and E. S. Chukhrai, Russ. J. Phys. Chem. A 86, 486 (2012). https://doi.org/10.1134/S0036024412030041
  19. T. I. Su, J. R. Lu, R. R. Thomas, et al., Langmuir 4, 438 (1998).
  20. E. Joussein, J. Churchman, S. Petit, and B. K. G. Theng, Clay Miner. 40, 383 (2005). https://doi.org/10.1180/0009855054040180
  21. J. Tully, R. Yendluri, and Y. Lvov, Biomacromol. 17, 615 (2016). https://doi.org/10.1021/asc.biomac.5b01542