Formation of a Dense La(Sr)Fe(Ga)O3 Interlayer at the Electrolyte/Porous Cathode Interface by Magnetron Sputtering and Its Effect on the Cathode Characteristics

N. B. Pavzderin N. B. Pavzderin , A. A. Solovyev A. A. Solovyev , A. V. Nikonov A. V. Nikonov , A. V. Shipilova A. V. Shipilova , S. V. Rabotkin S. V. Rabotkin , V. A. Semenov V. A. Semenov , A. S. Grenaderov A. S. Grenaderov , K. V. Oskomov K. V. Oskomov
Российский электрохимический журнал
Abstract / Full Text

Formation of dense La(Sr)Fe(Ga)O3–δ (LSFG) interlayers on the surface of La0.88Sr0.12Ga0.82Mg0.18O3–δ (LSGM) solid electrolyte by magnetron sputtering has been investigated. Their effect on electrode characteristics of the porous La0.7Sr0.3Fe0.95Ga0.05O3–δ cathodes has been studied. It is shown that the elemental composition of the interlayers depends mainly on the elemental composition of the target, whereas the conditions of deposition (discharge power, atmosphere, etc.) have an insignificant effect. The synthesized interlayers contain the larger amounts of La and Ga and the smaller amount of Sr and Fe as compared with the target composition. The introduction of the dense interlayer between the porous electrode and the electrolyte improves the electrode characteristics by making easier the transition of O2– ions across the electrode/electrolyte interface. The dense LSFG interlayers with the thickness of 600 and 800 nm decrease the polarization resistance of the electrode at 850°С by 33 and 43%, respectively.

Author information
  • Institute of Electrophysics, Ural Branch, Russian Academy of Sciences, 620016, Yekaterinburg, Russia

    N. B. Pavzderin & A. V. Nikonov

  • Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences, 634055, Tomsk, Russia

    A. A. Solovyev, A. V. Shipilova, S. V. Rabotkin, V. A. Semenov, A. S. Grenaderov & K. V. Oskomov

  1. Solid Oxide Fuels Cells: Facts and Figures, Eds. Irvine, J.T.S. and Connor, P., London: Springer, 2013, 203 p.
  2. Ishihara, T., Matsuda, H., Bustam, M.A., and Takita, Y., Oxide ion conductivity in doped Ga based perovskite type oxide, Solid State Ionics, 1996, vols. 86–88, p. 197.
  3. Murygin, I.V., Elektrodnye protsessy v tverdykh elektrolitakh (Electrode Processes in Solid Electrolytes), Moscow: Nauka, 1991.
  4. Sun, C., Hui, R., and Roller, J., Cathode materials for solid oxide fuel cells: a review, J. Solid State Electrochem., 2010, vol. 14, p. 1125.
  5. Hildenbrand, N., Boukamp, B.A., Nammensma, P., and Blank, D.H.A., Improved cathode/electrolyte interface of SOFC, Solid State Ionics, 2011, vol. 192, p. 12.
  6. Dumaisnil, K., Fasquelle, D., Mascot, M., Rolle, A., et al., Synthesis and characterization of La0.6Sr0.4Co0.8Fe0.2O3 films for solid oxide fuel cell cathodes, Thin Solid Films, 2014, vol. 553, p. 89.
  7. Chrzan, A., Karczewski, J., Gazda, M., Szymczewska, D., and Jasinski, P., Investigation of thin perovskite layers between cathode and doped ceria used as buffer layer in solid oxide fuel cells, J. Solid State Electrochem., 2015, vol. 19, p. 1807.
  8. Dumaisnil, K., Carru, J.-C., Fasquelle, D., et al., Promising performances for a La0.6Sr0.4Co0.8Fe0.2O3–δ cathode with a dense interfacial layer at the electrode-electrolyte interface, Ionics, 2017, vol. 23, p. 2125.
  9. De Vero, J.C., Develos-Bagarinao, K., Kishimotoa, H., et al., Enhanced stability of solid oxide fuel cells by employing a modified cathode-interlayer interface with a dense La0.6Sr0.4Co0.2Fe0.8O3–δ thin film, J. Power Sources, 2018, vol. 377, p. 128.
  10. Nikonov, A.V., Pavzderin, N.B., Shkerin, S.N., Gyrdasova, O.I., and Lipilin, A.S., Fabrication of multilayer ceramic structure for fuel cell with La(Sr)Ga(Mg)O3–La(Sr)Fe(Ga)O3 cathode, Russ. J. Appl. Chem., 2017, vol. 90, no. 3, p. 369.
  11. Zhou, W., Ran, R., Shao, Z., et al., Barium- and strontium-enriched (Ba0.5Sr0.5)1+xCo0.8Fe0.2O3–d oxides as high-performance cathodes for intermediate-temperature solid-oxide fuel cells, Acta Mater., 2008, vol. 56, p. 2687.
  12. Park, K., Lee, C., Bae, J., and Yoo, Y., Structural and electrochemical properties of Pr0.3Sr0.7Co0.3Fe0.7O3–δ cathode for IT-SOFC, Int. J. Hydrogen Energy, 2009, vol. 34, p. 6852.
  13. Coffey, G.W., Hardy, J., Pedersen, L.R., et al., Electrochemical properties of lanthanum strontium aluminum ferrites for the oxygen reduction reaction, Solid State Ionics, 2003, vol. 158, p. 1.
  14. Tietz, F., Raj, I.A., Zahid, M., and Stover, D., Electrical conductivity and thermal expansion of La0.8Sr0.2(Mn,Fe,Co)O3–y perovskites, Solid State Ionics, 2006, vol. 177, p. 1753.
  15. Shkerin, S.N., Kyz’min, A.V., Gyrdasova, O.I., Stroeva, A.Yu., and Nikonov, A.V., Electrical conductivity and thermal expansion of La1–xSrxFe1–yGayO3–δ (x = 0.2–0.5; y = 0–0.4), Russ. J. Electrochem., 2017, vol. 53, p. 154.
  16. Kharton, V.V., Shaulo, A.L., Viskup, A.P., Avdeev, M., et al., Perovskite-like system (Sr,La)(Fe,Ga)O3–δ: structure and ionic transport under oxidizing conditions, Solid State Ionics, 2002, vol. 150, p. 229.
  17. Ullmann, H., Trofimenko, N., Tietz, F., Stover, D., and Ahmad-Khanlou, A., Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes, Solid State Ionics, 2000, vol. 138, p. 79.
  18. Nikonov, A.V., Shkerin, S.N., Lipilin, A.S., et al., Aging of electrolyte La0.88Sr0.12Ga0.82Mg0.18O2–δ made using magnetic–pulse compaction, Russ. J. Electrochem., 2011, vol. 47, p. 733.
  19. Smolyanskiy, E.A., Linnik, S.A., Lauk, A.L., Solovyev, A.A., et al., Magnetron sputtered LSC thin films for solid oxide fuel cell application, J. Phys. Conf. Ser., 2018, vol. 1115, p. 032080.