Thermodynamic Study of Siver—Tin Selenides by the EMF Method with Ag4RbI5 Solid Electrolyte

I. Dzh. Alverdiev I. Dzh. Alverdiev , S. Z. Imamalieva S. Z. Imamalieva , D. M. Babanly D. M. Babanly , Yu. A. Yusibov Yu. A. Yusibov , D. B. Tagiev D. B. Tagiev , M. B. Babanly M. B. Babanly
Российский электрохимический журнал
Abstract / Full Text

The system Ag-Sn-Se in the region of Ag2Se-SnSe-Se composition is studied by measuring EMF of cells with Ag4RbI5 solid electrolyte in the temperature interval of 300–450 K. Based on the results of EMF measurements, the temperature of Ag8SnSe6 polymorphous transition (355 K) is determined and the partial molar functions of silver in certain phase regions of this system are calculated. Standard thermodynamic functions of formation and standard entropies are estimated for ternary phases AgSnSe2, Ag0.84Sn1.16Se2, and two modifications of Ag8SnSe6 and also thermodynamic functions of Ag8SnSe6 polymorphous transition.

Author information
  • Ganja State University, Ganja, AZ-1143, Azerbaijan

    I. Dzh. Alverdiev & Yu. A. Yusibov

  • Institute of Catalysis and Inorganic Chemistry, ANAS, Baku, AZ1143, Azerbaijan

    S. Z. Imamalieva, D. M. Babanly, D. B. Tagiev & M. B. Babanly

  1. Applications of Chalcogenides: S, Se, and Te, Ahluwalia, G.K., Ed., Springer. 2016.
  2. Babanly, M.B., Yusibov, Yu.A., and Abishev, V.T., Trekhkomponentnye khal’kogenidy na osnove medi i serebra (Three-component Chalcogenides based on copper and silver), Baku: BGU, 1993.
  3. Shevelkov, A.V., Chemical aspects of the design of thermoelectric materials, Russ. Chem. Rev., 2008, vol. 77, no. 1, p. 3.
  4. Hu, W.Q., Shi, Y.F., and Wu, L.M., Synthesis and shape control of Ag8SnS6 submicropyramids with high surface energy, Cryst. Growth Des., 2012, vol. 12, p. 3458.
  5. Guin, S.N., Srihari, V., and Biswas, K., Promising thermoelectric performance in n-type AgBiSe2: Effect of aliovalent anion doping, J. Mat. Chem. A., 2015, vol. 3, p. 648.
  6. Ivanov-Shits, A.K. and Murin, I.V., Ionika tverdogo tela (Solid State Ionics), St. Petersburg: St. Petersburg State University, 2006, vol. 1.
  7. Berezin, V.M. and Vyatkin, G.P., Superionnye polipro-vodnikovye khal’kogenidy, (Superionic Semiconducting Chalcogenides), Chelyabinsk: Yu. UrGU, 2001.
  8. Qiu, P., Agne, M.T., Liu Y., Zhu Y., Chen, H., Mao, T., Yang, J., Zhang, W., Haile, S.M., Zeier, W.G., Janek, J., Uher, C., Shi, X., Chen, L., and Snyder, G.F., Sup-pression of atom motion and metal deposition in mixed ionic electronic conductors, Nat. Commun., 2018, vol. 9, p. 2910.
  9. Babanly, M.B., Yusibov, Y.A., and Babanly, N.B., The EMF method with solid-state electrolyte in the ther-modynamic investigation of ternary copper and silver chalcogenides, in Electromotive Force and Measurement in Several Systems, Kara, S., Ed., Intechweb. Org. 2011, p. 57.
  10. Li, L., Liu, Y., Dai, J., Hong, A., Zeng, M., Yan, Z., Xu, J., Zhang, D., Shan, D., Liu, Sh., Ren, Z., and Liu, J.-M., High thermoelectric performance of superionic argyrodite compound Ag8SnSe6, J. Mater. Chem. C., 2016, vol. 4, p. 5806.
  11. Li, W., Lin, S., Ge, B., Yang, J., Zhang, W., and Pei, Y., Low sound velocity contributing to the high thermoelectric performance of Ag8SnSe6, Adv. Sci., 2016, vol. 3, p. 1600196.
  12. Hull, S., Berastegui, P., and Grippa, A., Ag+ diffusion within the rock-salt structured superionic conductor Ag4Sn3S8, J. Phys.: Condens. Matter., 2005, vol. 17, p. 1067.
  13. Semkiv, I., Ilchuk, H., Pawlowski, M., and Kusnezh, V., Ag8SnSe6 argyrodite synthesis and optical properties, Opto-Electron. Rev., 2017, vol. 25, p. 37.
  14. Moroz, N.V. and Prokhorenko, M.V., Measurement of the thermodynamic properties of saturated solid solutions of compounds in the Ag-Sn-Se system by the EMF method, Russ. J. Phys. Chem., 2015, vol. 89, no. 8, p. 1325.
  15. Moroz, M.V., Prokhorenko, M.V., and Rudyk, B.P, Thermodynamic properties of phases of the Ag-Ge-Te system, Russ. J. Electrochem., 2014, vol. 50, no. 12, p. 1177.
  16. Moroz, M.V. and Prokhorenko, M.V., Determination of thermodynamic properties of saturated solid solutions of the Ag-Ge-Se system using EMF technique, Russ. J. Electrochem, 2015, vol. 51, p. 697.
  17. Tesfaye, F. and Taskinen, P., Experimental thermodynamic study of the equilibrium phase AgBi3S5 by an improved EMF method, Thermochim. Acta, 2013, vol. 562, p. 75.
  18. Aspiala, M., Tesfaye, F., and Taskinen, P., Thermodynamic study in the Ag-Sb-S system by the EMF method, J. Chem. Thermodyn., 2016, vol. 98, p. 361.
  19. Babanly, N.B., Orujlu, E.N., Imamaliyeva, S.Z., Yusibov, Y.A., and Babanly, M.B., Thermodynamic investigation of silver-thallium tellurides by EMF method with solid electrolyte Ag4RbI5, J. Chem. Thermodyn., 2019, vol. 128, p. 78.
  20. Babanly, N.B., Imamaliyeva, S.Z., Yusibov, Y.A., Taghiyev, D.B., and Babanly, M.B. Thermodynamic study of the Ag-Tl-Se system using the EMF method with Ag4RbI5 as a solid electrolyte, J. Sol. State Electrochem., 2018, vol. 22, p. 1143.
  21. Mashadieva, L.F., Mansimova, Sh.G., Yusibov, Yu.A., and Babanly, M.B., Thermodynamic study of the 2PbTe-AgSbTe2 system using EMF technique with the Ag4RbI5 solid electrolyte, Russ. J. Electrochem., 2018, vol. 54, p. 106.
  22. Babanly, M.B., Mashadieva, L.F., Aliev, Z.S., Shevelkov, A.V., and Yusibov, Y.A., Phase diagram and thermodynamic properties of compounds of the AgI-TlI-I system, J. Alloys Compd., 2012, vol. 524, p. 38.
  23. Mashadieva, L.F., Aliev, Z.S., Shevelkov, A.V., and Babanly, M.B., Experimental investigation of the Ag-Bi-I ternary system and thermodynamic properties of the ternary phases, J. Alloys Compd., 2013, vol. 551, p. 512.
  24. Mashadiyeva, L.F., Kevser, J.O., Aliev, I.I., Yusibov, Y.A., Taghiyev, D.B., Aliev, Z.S., and Babanly, M.B., The Ag2Te-SnTe-Bi2Te3 system and thermodynamic properties of the (2SnTe)1-x(AgBiTe2)x solid solutions series, J. Alloys. Compd., 2017, vol. 724, p. 641.
  25. Mashadiyeva, L.F., Kevser, J.O., Aliev, I.I., Yusibov, Y.A., Taghiyev, D.B., Aliev, Z.S., and Babanly, M.B., Phase Equilibria in the Ag2Te-SnTe-Sb2Te3 System and Thermodynamic Properties of the (2SnTe)12x(AgSbTe2)x Solid Solution, J. Phase Equilib. Diffus., 2017, vol. 38, p. 603.
  26. Alverdiev, I.Dzh., Bagkheri, S.M., Imamalieva, S.Z., Yusibov, Yu.A., and Babanly, M.B., Thermodynamic study of Ag8GeSe6 by EMF with an Ag4RbI5 solid electrolyte, Russ. J. Electrochem., 2017, vol. 53, p. 551.
  27. Babanly, M.B., Mashadiyeva, L.F., Veliyeva, G.M., Imamalieva, and S.Z., Shykhyev, Y.M., Thermodynamic study of the Ag-As-Se and Ag-S-I systems using the EMF method with a solid Ag4RbI5 electrolyte, Russ. J. Electrochem., 2015, vol. 45, p. 399.
  28. Babanly, M.B. and Yusibov, Yu.A., Elektrokhimicheskie metody v termodinamike neorganicheskikh sistem (Electrochemical Methods in Thermodynamics of Inorganic Systems) Baku: ELM, 2011.
  29. Gorochov, O., Les composds Ag8MX6 (M = Si. Ge. Sn et X = S, Se, Te), Bull. Soc. Chim. Fr., 1968, p. 2263.
  30. Ollitrault-Fitchet, R., Rivet, J., and Flahaut, J., Description du systeme ternaire Ag-Sn-Se, J. Less-Common. Met., 1988, vol. 138, p. 241.
  31. Yusibov, Yu. A., Alverdiev, I. Dzh., Mashadieva, L.F., Babanly, D.M., Mamedov, A.N., and Babanly, M.B., Experimental study and 3D modeling of the phase diagram of the Ag-Sn-Se system, Russ. J. Inorg. Chem., 2018, vol. 63, no. 12, p. 1622.
  32. Gulay, L.D., Olekseyuk, I.D., and Parasyuk, O.V., Crystal structure of [β-Ag8SnSe6, J. Alloys Compd., 2002, vol. 339, p. 113.
  33. Wold, A. and Brec, R., Structure NaCl des phases AgxSn 1_xX (X = S, Se), Mater. Res. Bull., 1976, vol. 11, p. 761.
  34. Moroz, M.V., Prokhorenko, M.V., Demchenko, P.Yu., and Reshetnyak, O.V., Thermodynamic properties of saturated solid solutions of Ag7SnSe5Br and Ag8SnSe6 compounds in the Ag_Sn_Se_Br system measured by the EMF method, J. Chem. Thermodyn., 2017, vol. 106, p. 228.
  35. Abbasov, A.S., Termodinamicheskie svoistva nekotorykh poluprovodnikovykh veshchestv (Thermodynamic Properties of Certain Semiconducting Substances), Baku: ELM, 1981.
  36. Feng, D., Taskinen, P., and Tesfaye, F., Thermodynamic stability of Ag2Se from 350 to 500 K by a solid state galvanic cell, Solid State Ionics, 2013, vol. 231, p. 1.
  37. Morachevskii, A.G., Voronin, G.F., Geiderikh, V.A., and Kutsenok, I.B., Elektrokhimicheskie metody issledo-vaniya v termodinamike metallicheskikh sistem (Electrochemical Research Methods in Thermodynamics of Metal Systems), Moscow: Akademkniga, 2003.
  38. Database “Thermal Constants of Substances” Yung-man, V.S., Ed.: http://www.chem.msu.su/cgi-bin/tkv. Cited 2006.
  39. Melekh, B.T., Stepanova, N.B., and Fomina, T.A., Thermodynamic properties of compounds in the Sn-Se system, Zh. Fiz. Khim., 1971, vol. 45, p. 2018.
  40. Gerasimov, Ya.I., Krestovnikov, A.N., and Gorbov, S.I., Khimicheskaya termodinamika v metallurgii, Spravochnik. T. 6 (Chemical Thermodynamics in Metallurgy. Handbook. Vol. 6), Moscow: Metallurgy, 1974.
  41. Kubaschewski, O., Alcock, C.B., and Spenser, P.J., Materials Thermochemistry, Oxford: Pergamon, 1993.