Статья
2020

Simultaneous Determination of Nitrophenol Isomers at Multi-Walled Carbon Nanotube-β-Cyclodextrin-Poly (Diphenylamine) Composite Modified Glassy Carbon Electrode


R. Nakhostin R. Nakhostin , K. Zarei K. Zarei
Российский электрохимический журнал
https://doi.org/10.1134/S1023193520030088
Abstract / Full Text

Nitrophenol (NP) isomers are toxic for human, animals and plants. Therefore determination of them in environment is very urgent and important. In this paper, cyclic voltammetry was applied to polymerization of diphenylamine (DPA) onto the multi-walled carbon nanotubes-β-cyclodextrin (MWCNT-β-CD) modified GCE in monomer solution and 5 M H2SO4 and then NP isomers were determined using modified electrode. After adsorption of NP isomers on PDPA/MWCNT-β-CD at 0.2 V for 150 s, it showed two reduction peaks in phosphate buffer solution at pH 7. 4-nitrophenol (4-NP) peak was shown as an individual peak but the peaks of 2-nitrophenol (2-NP) and 3-nitrophenol (3-NP) overlapped with each other. Therefore adaptive neuro-fuzzy inference system (ANFIS) was applied for the simultaneous analysis of the voltammogram data. The detection limits for 2-NP, 3-NP and 4-NP were obtained as 5.0 × 10–7, 1.1 × 10–7 and 1.3 × 10–7 M, respectively. These results showed that modified electrode has well sensitivity and selectivity for simultaneous determination of NP isomers. This sensor was applied for determination of NP isomers in water samples analysis. This is the first application of this sensor and ANFIS method for simultaneous determination of NP isomers. The reduction mechanism was also investigated.

Author information
  • School of Chemistry, Damghan University, Damghan, Iran

    R. Nakhostin & K. Zarei

References
  1. Li, J., Kuang, D., Feng, Y., Zhang, F., Xu, Z., and Liu, M., A graphene oxide-based electrochemical sensor for sensitive determination of 4-nitrophenol, J. Hazard. Mater., 2012, vol. 201–202, p. 250.
  2. Belloli, R., Barletta, B., Bolzacchini, E., Meinardi, S., Orlandi, M., and Rindone, B., Determination of toxic nitrophenols in the atmosphere by high-performance liquid chromatography, J. Chromatogr. A, 1999, vol. 846, p. 277.
  3. Guo, X., Wang, Z., and Zhou, S., The separation and determination of nitrophenol isomers by high-performance capillary zone electrophoresis, Talanta, 2004, vol. 64, p. 135.
  4. Fischer, J., Barek, J., and Wang, J., Separation and detection of nitrophenols at capillary electrophoresis microchips with amperometric detection, Electroanalysis, 2006, vol. 18, p. 195.
  5. Niazi, A. and Yazdanipour, A., Spectrophotometric simultaneous determination of nitrophenol isomers by orthogonal signal correction and partial least squares, J. Hazard. Mater., 2007, vol. 146, p. 421.
  6. Perry, D.A., Son, H.J., Cordova, J.S., Smith, L.G., and Biris, A.S., Adsorption analysis of nitrophenol isomers on silver nanostructures by surface-enhanced spectroscopy, J. Colloid. Interface Sci., 2010, vol. 342, p. 311.
  7. Miró, M., Cladera, A., Estela, J.M., and Cerda, V., Dual wetting-film multi-syringe flow injection analysis extraction application to the simultaneous determination of nitrophenols, Anal. Chim. Acta, 2001, vol. 438, p. 103.
  8. Chu, L., Han, L., and Zhang, X., Electrochemical simultaneous determination of nitrophenol isomers at nano-gold modified glassy carbon electrode, J. Appl. Electrochem., 2011, vol. 41, p. 687.
  9. Liu, Z., Ma, X., Zhang, H., Lu, W., Ma, H., and Hou, S., Simultaneous determination of nitrophenol isomers based on β-cyclodextrin functionalized reduced graphene oxide, Electroanalysis, 2012, vol. 24, p. 1178.
  10. Luo, L.-Q., Zou, X.-l., Ding, Y.-P., and Wu, Q.-S., Derivative voltammetric direct simultaneous determination of nitrophenol isomers at a carbon nanotube modified electrode, Sens. Actuat. B: Chem., 2008, vol. 135, p. 61.
  11. Wei, T., Huang, X., Zeng, Q., and Wang, L., Simultaneous electrochemical determination of nitrophenol isomers with the polyfurfural film modified glassy carbon electrode, J. Electroanal. Chem., 2015, vol. 743, p. 105.
  12. Xu, X., Liu, Z., Zhang, X., Duan, S., Xu, S., and Zhou, C., β-cyclodextrin functionalized mesoporous silica for electrochemical selective sensor: simultaneous determination of nitrophenol isomers, Electrochim. Acta, 2011, vol. 58, p. 142.
  13. Yao, C., Sun, H., Fu, H.-F., and Tan, Z.-C., Sensitive simultaneous determination of nitrophenol isomers at poly(p-aminobenzene sulfonic acid) film modified graphite electrode, Electrochim. Acta, 2015, vol. 156, p. 163.
  14. Zhang, T., Lang, Q., Yang, D., Li, L., Zeng, L., Zheng, C., Li, T., Wei, M., and Liu, A., Simultaneous voltammetric determination of nitrophenol isomers at ordered mesoporous carbon modified electrode, Electrochim. Acta, 2013, vol. 106, p. 127.
  15. Qi, H. and Zhang, C., Simultaneous determination of hydroquinone and catechol at a glassy carbon electrode modified with multiwall carbon nanotubes, Electroanasis, 2005, vol. 17, p. 832.
  16. Umasankar, Y., Periasamy, A.P., and Chen, S.-M., Electrocatalysis and simultaneous determination of catechol and quinol by poly(malachite green) coated multiwalled carbon nanotube film, Anal. Biochem., 2011, vol. 411, p. 71.
  17. Wang, S.F. and Xu, Q., Square wave voltammetry determination of brucine at multiwall carbon nanotube modified glassy carbon electrodes, Anal. Lett., 2005, vol. 38, p. 657.
  18. Wang, Z., Li, S., and Lv, Q., Simultaneous determination of dihydroxybenzene isomers at single-wall carbon nanotube electrode, Sens. Actuat. B, 2007, vol. 127, p. 420.
  19. Chekin, F. and Bagheri, S., Tyrosine sensing on phthalic anhydride functionalized chitosan and carbon nanotube film coated glassy carbon electrode, Russ. J. Electrochem., 2016, vol. 52, p. 174.
  20. Lu, Z., Lu, C., and Meng, Q., An inclusion complex of β-cyclodextrin with mnt anion (mnt = maleonitriledithiolate) studied by induced circular dichroism, J. Incl. Phenom. Macrocycl. Chem., 2008, vol. 61, p. 101.
  21. Tredici, I., Merli, D., Zavarise, F., and Profumo, A., α‑cyclodextrins chemically modified gold electrode for the determination of nitroaromatic compounds, J. Electroanal. Chem., 2010, vol. 645, p. 22.
  22. Akola, J., Rytkönen, K., and Manninen, M., Electronic properties of single-walled carbon nanotubes inside cyclic supermolecules, J. Phys. Chem. B, 2006, vol. 110, p. 5186.
  23. Ali, M.B., Kalfat, R., Sfihi, H., Chovelon, J.M., Ouada, H.B., and Jaffrezic-Renault, N., Sensitive cyclodextrin-polysiloxane gel membrane on EIS structure and ISFET for heavy metal ion detection, Sens. Actuat. B: Chem., 2000, vol. 62, p. 233.
  24. Camacho, C., Chico, B., Cao, R., Matías, J.C., Hernández, J., Palchetti, I., Simpson, B.K., Mascini, M., and Villalonga, R., Novel enzyme biosensor for hydrogen peroxide via supramolecular associations, Biosens. Bioelectron., 2009, vol. 24, p. 2028.
  25. Casas-Solvas, J.M., Ortiz-Salmerón, E., Fernández, I., García-Fuentes, L., Santoyo-González, F., and Vargas-Berenguel, A., Ferrocene-β-cyclodextrin conjugates: synthesis, supramolecular behavior, and use as electrochemical sensors, Chem. Eur. J., 2009, vol. 15, p. 8087.
  26. de Abreu, F.C., Ferreira, D.C.M., Goulart, M.O.F., Buriez, O., and Amatore, C., Electrochemical activation of β-lapachone in β-cyclodextrin inclusion complexes and reactivity of its reduced form towards oxygen in aqueous solutions, J. Electroanal. Chem., 2007, vol. 608, p. 125.
  27. Fang, B., Zhang, W., Kan, X., Tao, H., Deng, X., and Li, M., Fabrication and application of a novel modified electrode based on β-cyclodextrin/ferrocenecarboxylic acid inclusion complex, Sens. Actuat. B, 2006, vol. 117, p. 230.
  28. Shen, Q. and Wang, X., Simultaneous determination of adenine, guanine and thymine based on β-cyclodextrin/MWNTs modified electrode, J. Electroanal. Chem., 2009, vol. 632, p. 149.
  29. Wang, Z., Xiao, S., and Chen, Y., β-cyclodextrin incorporated carbon nanotubes-modified electrodes for simultaneous determination of adenine and guanine, J. Electroanal. Chem., 2006, vol. 589, p. 237.
  30. Rahman, M., Kumar, P., Park, D.-S., and Shim, Y.-B., Electrochemical sensors based on organic conjugated polymers, Sensors, 2008, vol. 8, p. 118.
  31. Zarei, K., Atabati, M., and Moghaddary, S., Predicting the heats of combustion of polynitro arene, polynitro heteroarene, acyclic and cyclic nitramine, nitrate ester and nitroaliphatic compounds using bee algorithm and adaptive neuro-fuzzy inference system, Chemometr. Intell. Lab. Syst., 2013, vol. 128, p. 37.
  32. Jalali-Heravi, M. and Shahbazikhah, P., Quantitative structure-mobility relationship study of a diverse set of organic acids using classification and regression trees and adaptive neuro-fuzzy inference systems, Electrophores, 2008, vol. 29, p. 363.
  33. Zarei, K. and Helli, H., Electrochemical determination of aminopyrene on glassy carbon electrode modified with multi-walled carbon nanotube-sodium dodecyl sulfate/Nafion composite film, J. Electroanal. Chem., 2015, vol. 749, p. 10.
  34. Zarei, K., Teymori, E., and Kor, K., Very sensitive differential pulse adsorptive stripping voltammetric determination of 4-nitrophenol at poly (diphenylamine)/multi-walled carbon nanotube-β-cyclodextrin-modified glassy carbon electrode, Int. J. Environ. Anal. Chem., 2014, vol. 94, p. 1407.
  35. Fodjo, E.K., Li, Y.T., Li, D.W., Riaz, S., and Long, Y.T., Rapid determination of nitrophenol isomers in polluted water based on multi-walled carbon nanotubes modified screen-printed electrode, Med. J. Chem., 2011, vol. 1, p. 19.
  36. Zhang, D.P., Wu, W.L., Long, H.Y., Liu, Y.C., and Yang, Z.S., Voltammetric behavior of o-nitrophenol and damage to DNA, Int. J. Mol. Sci., 2008, vol. 9, p. 316.