Sulfide-Conducting Ionic Conductors with the CaFe2O4 and Yb3S4 Structure Doped with Zirconium Disulfide

M. A. Pentin M. A. Pentin , B. A. Ananchenko B. A. Ananchenko , L. A. Kalinina L. A. Kalinina , E. V. Kosheleva E. V. Kosheleva , Yu. N. Ushakova Yu. N. Ushakova , I. V. Murin I. V. Murin
Российский электрохимический журнал
Abstract / Full Text

Abstract—Sulfide-conducting ionic salts: calcium thioyttrate and thioytterbate and barium thiosamarate with the citrate-nitrate prehistory and also a semiconducting dopant, zirconium disulfide, are synthesized. The conditions are selected for preparation of heterogeneous mixtures CaY2S4–ZrS2 (I), BaSm2S4–ZrS2 (II), and CaYb2S4–ZrS2 (III). Attestation of samples by XRD and SEM methods revealed the formation of new compounds Y2ZrS5 and BaZrS3 in heterogeneous systems (I) and (II), respectively, and the formation of a solid solution based of calcium thioytterbate in system (III) containing up to 10 mol % ZrS2. TGM and DTA studies attest of thermal stability of all these systems in air. The temperature and concentration dependences of the electrical conductivity of heterogeneous mixtures are studied. Substantial increase in conductivity of heterogeneous mixtures (I) and (II) in the composition region from 20 to 40 mol % ZrS2 and the decrease in conductivity upon addition of 2–40 mol % ZrS2 into calcium thioytterbate (system III) are observed.

Author information
  • Vyatka State University, Institute of Chemistry and Ecology, 610000, Kirov, Russia

    M. A. Pentin, B. A. Ananchenko, L. A. Kalinina, E. V. Kosheleva & Yu. N. Ushakova

  • St. Petersburg State University, 199034, St. Petersburg, Russia

    I. V. Murin

  1. Korotkov, A.S., Khritokhin, N.A., and Andreev, O.V., Structure stability maps for MLn2X4 compounds, Russ. J. Inorg. Chem., 2005, vol. 50, no. 1, p. 61.
  2. Andreev, O.V., Kislovskaya, T.M., and Kertman, A.V., Phase equilibria in systems CaS–Ln2S3 (Ln = Nd, Gd, Dy), Zh. Neorg. Khim., 1990, vol. 35, no. 5, p. 1280.
  3. Rustamov, P.G., Aliev, O.M., and Einullaev, A.V., Khal’kogenaty redkikh elementov (Chalcolanthates of Rare Elements), Moscow: Nauka, 1989.
  4. Eliseev, A.A., Kuz’micheva, T.M., and Belostotsky, A.K., Crystal chemical prediction and synthesis of ternary chalcogenides, Zh. Neorg. Khim., 1980, vol. 25, no. 4, p. 895.
  5. Kuz'micheva, G.M., Andreev, O.V., and Abdrakhmanov, E.S., X-ray diffraction study of the phases in the CaS–Yb2S3 system (0–50 mol % Yb2S3), Russ. J. Inorg. Chem., 2003, vol. 48, no. 2, p. 263.
  6. Ivanov-Shits, A.K. and Murin I.V., Ionika tverdogo tela, Tom 2 (Solid State Ionics, Vol. 2), St. Petersburg: St. PbSU, 2010.
  7. Kalinina, L.A., Shirokova, G.I., Murin, I.V., Ushakova, Yu.N., Fominykh, E.G., and Lyalina, M.Yu., Sulfide-conducting solid electrolytes, Rus. J. Appl. Chem., 2000, vol. 73, no. 8, p. 1396.
  8. Kalinina, L., Ushakova, Ju., Fominykh, H., Medvedeva, O., Sulphur conductive solid electrolytes in MeS–Ln2S3 systems, Curr. Appl. Phys., 2008, vol. 8, no. 1, p. 107.
  9. Lyalina, M.Yu., Murin, I.V., Kalinina, L.A., and Shirokova, G.I., Synthesis and study of the electrical conductivity of solid electrolyte BaNd2S4, Vestn. S.-Peterb. Univ., 1994, vol. 1, p. 99.
  10. Kalinina, L.A, Ushakova, Y.N., Yurlov, I.S., Bayderina, T.V., and Murin, I.V., Electrochemical properties of solid electrolytes based on BaSm2S4. Russ. J. Electrochem., 2009, vol. 45, no. 6, p. 677.
  11. Medvedeva, O.V., Kalinina, L.A., Metlin, Yu.G., and Ushakova, Yu.N., Synthesis and electrolytic properties of phases based on calcium thiogadolinate as a function of method of the precursor synthesis, Russ. J. Electrochem., 2005, vol. 41, no. 5, p. 555.
  12. Johnson, V.S., Synthesis and characterisation of ceramic potential sulphide conductors, Doctoral Thesis, Loughborough (UK): Loughborough Univ., 2005, p. 337.
  13. White, R.J., Synthesis and characterisation of complex sulfide materials with potential use as high temperature inorganic sulfide-ion conductors, Doctoral Thesis, Loughborough (UK): Loughborough Univ., 2006, p. 416.
  14. Kalinina, L.A., Shirokova, G.I., Lyalina, M.Yu., Chernov, S.V., and Murin, I.V., Electrochemical study of sulfide-conducting solid electrolytes, Sbornik: Elektrodika tverdotel’nykh sistem (Collection of papers: Electrodics of Solid State Systems), Perfil’ev, M.V., Ed., Yekaterinburg: Ural Branch RAS, 1994, p. 18.
  15. Mikhailichenko, T.V., Kalinina, L.A., Ushakova, Y.N., Shirokova, G.I., and Tokareva, T.V., Synthesis of complex sulfide phases BaSm2S4–Tm2S3 and studies of their electrolytic properties, Russ. J. Electrochem., 2011, vol. 47, no. 5, p. 556.
  16. Ananchenko, B.A., Myakishev, A.O., Kalinina, L.A., Kosheleva, E.V., and Murin, I.V., Effect of composition on character of defect formation and ion transport in (1 – x)[Ca1 – yYb\(_{y}^{{2 + }}\)]Yb\(_{2}^{{3 + }}\)S4 – δYb2S3, Russ. J. Electrochem., 2017, vol. 53, no. 8, p. 799.
  17. Ushakova, Y.N., Kalinina, L.A., Ananchenko, B.A., Yurlov, I.S., Shirokova, G.I., and Fominykh, E.G., Electrolytic properties of sulfide-conducting phases based on the BaLn2S4 and CaLn2S4 compounds of different structural types, Fiz. Khim. Stekla. 2009, vol. 35, no. 3, p. 332.
  18. Neiman, A.Ya., Pestereva, N.N., Zhou, Y., Nechaev, D.O., Koteneva, E.A., Vanec, K., Higgins, B., Volkona, E.A., and Korchuganova, I.G., The nature and the mechanism of ion transfer in tungstates Me2+{WO4} (Ca, Sr, Ba) and Me{WO4}3+ (Al, Sc, In) according to the data acquired by the Tubandt method, Russ. J. Electrochem., 2013, vol. 49, no. 9, p. 895.
  19. Ananchenko, B.A., Mikhailichenko, T.V., Kalinina, L.A., Ushakova, Yu.N., Pentin, M.A., and Myakishev, A.O., Effect of the method for the preparation of the oxide precursor on the electrolytic properties of sulfide-conducting solid electrolytes, Russ. J. Electrochem., 2015, vol. 51, no. 5, p. 473.
  20. Kalinina, L.A., Shirokova, G.I., Murin, I.V., Ushakova, Yu.N., Fominykh, E.G., and Lyalina, M.Yu., Sulfide-conducting solid electrolytes, Rus. J. Appl. Chem., 2000, vol. 73, no. 8, p. 1396.
  21. Koshurnikova, E.V., Kalinina, L.A., Ushakova, Yu. N., P’yankova, M.V., and Murin, I.V., Synthesis, structure and physico-chemical properties of sulfide ceramics CaY2S4–Yb2S3, Russ. J. Electrochem., 2013, vol. 49, no. 8, p. 769.
  22. Electrical Conductivity in Ceramics and Glass, Tallan, N.M., Ed., New York: Marcel Dekker, 1974.
  23. Kuikkola, K. and Wagner, C., Galvanic cells for the determination of the standard molar free energy of formation of metal halides, oxides, and sulfides at elevated temperatures, J. Electrochem. Soc., 1957, vol. 104, no. 5, p. 308.
  24. Kosheleva, E.V., Pentin, M.A., Kalinina, L.A., Mikhailichenko, T.V., Lapteva, T.A., and Ushakova, Y.N., Heterogeneous doping of sulfide-conducting phases based on calcium and barium thiolanthanates, Russ. J. Electrochem., 2017, vol. 53, no. 7, p. 790.
  25. Kalinina, L.A., The study of the ternary system BaS–ZrS2 with the alleged sulfide conductivity, Cand. Sci. (Chem.) Dissertation, Moscow: Moscow State University, 1976.
  26. Kertman, A.V. and Andreev, O.V., The thermal stability of ALn2S4 phases in air and in water vapor, Vestnik TyumGU, 2003, no. 2, p. 194.