Ion Conductivity and Vibrational Spectra of LiNO3–KNO3 + Al2O3 Composites

K. Sh. Rabadanov K. Sh. Rabadanov , M. M. Gafurov M. M. Gafurov , Z. Yu. Kubataev Z. Yu. Kubataev , A. M. Amirov A. M. Amirov , M. A. Akhmedov M. A. Akhmedov , N. S. Shabanov N. S. Shabanov , M. B. Ataev M. B. Ataev
Российский электрохимический журнал
Abstract / Full Text

Composite solid electrolytes are synthesized on the basis of the eutectic nitrate mixture of 0.42LiNO3–0.58KNO3 doped by aluminum oxide nanosized powder. The impedance spectroscopy technique is used to study the conductivity of the obtained composites. Heterogeneous doping results in an increase in ion conductivity and a decrease in activation energy. The method of Raman spectroscopy shows that the doping by aluminum oxide leads to formation of an amorphous phase. At low nanopowder concentrations, amorphization is brought about by the lithium nitrate phase.

Author information
  • Dagestan Scientific Center, Russian Academy of Sciences, Analytical Center for Collective Use, 367001, Makhachkala, Republic of Dagestan, Russia

    K. Sh. Rabadanov, M. M. Gafurov, Z. Yu. Kubataev, A. M. Amirov, M. A. Akhmedov, N. S. Shabanov & M. B. Ataev

  1. Liang, C.C., Conduction characteristics of the lithium iodide-aluminum oxide solid electrolytes, J. Electrochem. Soc., 1973, vol. 120, p. 1289.
  2. Poulsen, F.W., Andersen, N.H., Kindl, B., and Schoonman, J., Properties of LiI-alumina composite electrolytes, Solid State Ionics, 1983, nos. 9–10, p. 119.
  3. Ulihin, A.S. and Uvarov, N.F., Electrochemical properties of composition solid electrolytes LiClO4–MgO, Russ. J. Electrochem., 2009, vol. 45, p. 707.
  4. Uvarov, N.F., Hairetdinov, E.F., and Skobelev, I.V., Composite Solid Electrolytes MeNO3–Al2O3 (Me = Li, Na, K), Solid State Ionics, 1996, vols. 86–88, p. 577.
  5. Chen, L., Cros, C., Castagnet, R., and Hagenmuller, P., Electrical conductivity enhancement in an eutectic system containing dispersed second phase particles, Solid State Ionics, 1988, vol. 31, p. 209.
  6. Liu, W., Zhu, S., Wang, D., et al., New solid electrolyte materials of nitrate-ceramic composites. Property and application in intermediate temperature fuel cells, Extended Abstracts: Tenth International Conference on Solid State Ionics, Singapore, 1995, p. 102.
  7. Rabadanov, K.Sh., Gafurov, M.M., Aliev, A.R., Amirov, A.M., and Kakagasanov, M.G., The raman spectra and molecular relaxation properties of heterophase glasses and the melts of K,Ca/CH3COO, Li,K,Cs/CH3COO, J. Appl. Spectrosc., 2018, vol. 85, p. 70.
  8. Kosov, Yu.V., Prisyazhnyy, V.D., Gafurov, M.M., and Yaremchuk, G.G., Raman spectra and electrical conductivity of heterophase melts and glass systems K.Ca/NO3 and K,Mg/NO3, Ukr. Khim. Zh. (Russ. Ed.), 1989, vol. 55, p. 19.
  9. Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds. Wiley-Interscience, 1991.
  10. Brooker, M.Y., Raman spectroscopic investigations of structural aspects of the different phases of lithium sodium and potassium nitrate, J. Phys. Chem. Solids, 1978, vol. 39, p. 657.
  11. Gafurov, M.M., Rabadanov, K.S., Ataev, M.B., Amirov, A.M., Kubataev, Z.Y., and Kakagasanov, M.G., Structural and dynamic properties of LiNO3 + Al2O3 nanocomposites, Phys. Solid State, 2015, vol. 57, no. 10, p. 2066.
  12. Ataev, M.B., Gafurov, M.M., Rabadanov, K.S., Amirov, A.M., and Emirov, R.M., Phase composition and the structure of (1 – x)KNO3 + xAl2O3 nanocomposites by X-ray diffraction, Phys. Solid State, 2016, vol. 58, p. 2423.
  13. Gadzhiev, A.Z. and Kirillov, S.A., On temperature dependence of line frequencies in molecular spectra, Zh. Prikl. Spektrosk., 1974, vol. 21, p. 929.
  14. Pogorelov, V.E, Lizengevich, A.I., Kondilenko, I.I., and Buyan, G.P., Vibrational relaxation in condensed media, Usp. Fiz. Nauk, 1979, vol. 22, p. 270.
  15. Wang, C.H., Spectroscopy of condensed media. Dynamics of molecular interactions. Orlando: Academic, 1985.
  16. Rothschild, W.G., Dynamics of Molecular Liquids, New York: Wiley, 1984.
  17. Oxtoby, D.W., Vibrational Relaxation in Liquids, Annu. Rev. Phys. Chem., 1981, vol. 32, p. 77.
  18. Kato, T. and Takenaka, T., Raman spectral studies of the dynamics of ions in molten LiNO3–RbNO3 mixtures. II. Vibrational dephasing: Roles of fluctuations of coordination number and concentration, Mol. Phys., 1982, vol. 46, p. 257.
  19. Rabadanov, K.S., Gafurov, M.M., Aliev, A.R., Akhmedov, I.R., Kakagasanov, M.G., and Kirillov, S.A., Vibrational dephasing of the perchlorate ion in an LiClO4 melt, Russ. Metal. (Metally), 2011, vol. 8, p. 760.