Development of Copper-Selective Potentiometric Sensor Using a New Ion Carrier: A Theoretical and Experimental Study

A. Panahi Sarmad A. Panahi Sarmad , L. Hajiaghababaei L. Hajiaghababaei , A. S. Shahvelayati A. S. Shahvelayati , J. Najafpour J. Najafpour
Российский электрохимический журнал
Abstract / Full Text

The most stable conformer of a ligand (i.e., 2-(2-((4-methoxybenzoyl)imino)-4-(4-methoxyphenyl) thiazol-3(2H)-yl)-2-phenylacetic acid) and its isosteric complexes with different cations were determined through the MMFF94 method based on molecular mechanics. The results of the Gibbs free energy of the reaction by B3LYP/6-31G(d) calculation level in which 6-31G(d) base level for heavy metals replaced by LanL2DZ show that the thermodynamic complexation reactivity of Cu2+ and the ligand was maximal. Consequently, the mentioned ligand was used to construct a Cu2+ ion-selective electrode. The developed liquid membrane electrode showed a Nernstian response (33.33 ± 2.71 mV per decade of concentration) from 1.0 × 10–1 to 1.0 × 10–6 mol L–1. The detection limit of the sensor was determined as 9.0 × 10–7 mol L–1. The electrode had a short response time around 10 s and was applicable in the pH range of 5.0–8.0. Moreover, the sensor was successfully used in the potentiometric titration of Cu2+ with EDTA and also in the direct determination of Cu2+.

Author information
  • Department of Chemistry, Islamic Azad University, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Tehran, Iran

    A. Panahi Sarmad, L. Hajiaghababaei, A. S. Shahvelayati & J. Najafpour

  1. Järup, L., Hazards of heavy metal contamination, Br. Med. Bull., 2003, vol. 68, p. 167.
  2. Ali, T.A., Eldidamony, A.M., Mohamed, G.G., and Elatfy, D.M., Construction of chemically modified electrode for the selective determination of copper(II) ions in polluted water samples based on new β-cyclodextrine and 1,4-bis(6-bromohexyloxy)benzene ionophores, Int. J. Electrochem. Sci., 2014, vol. 9, p. 2420.
  3. Ali, T.A., Mohamed, G.G., El-Dessouky, M.M.I., Abou El-Ella, S.M., and Mohamed, R.T.F., Modified screen-printed electrode for potentiometric determination of copper(II) in water samples, J. Solution Chem., 2013, vol. 42, p. 1336.
  4. Ali, T.A., Mohamed, G.G., and Othman, A.R., Design and construction of new potentiometric sensors for determination of copper(II) ion based on copper oxide nanoparticles, Int. J. Electrochem. Sci., 2015, vol. 10, p. 7275.
  5. Mosazadeh, M., Ebrahimi, M., and Morsali, A., Evaluation of a carbon paste electrode modified with ionic liquid and MnO nanoparticles in the Cu(II) determination by potentiometric method, Entomol. Appl. Sci. Lett., 2016, vol. 3, no. 4, p. 33.
  6. Islamnezhad, A. and Mahmoodi, N., Potentiometric Cu2+-selective electrode with subnanomolar detection limit, Desalination, 2011, vol. 271, p. 157.
  7. Greenwood, N.N. and Earnshow, A., Handbook of Chemistry of the Elements, New York: Pergamon Press, 1984.
  8. Marston, H.R., Cobalt, copper and molybdenum in the nutrition of animals and plants, Physiol. Rev., 1952, vol. 32, p. 66.
  9. Hajiaghababaei, L., Borbor, I., Najafpour, J., Raouf Darvich, M., Ganjali, M.R., and Dehghan, F., Rapid monitoring of copper over a wide concentration range by high-sensitive potentiometric membrane electrode based on 1-cyano-1-piperidino-2(N-piperidino methyl)-cyclo hexane, J. Mex. Chem. Soc., 2016, vol. 60, p. 89.
  10. Ganjali, M.R., Hosseini, M., Basiripour, F., Javanbakht, M., Hashemi, O.R., Faal Rastegar, M., Shamsipur, M., and Buchanen, G.W., Novel coated-graphite membrane sensor based on N,N′-dimethylcyanodiaza-18-crown-6 for the determination of ultra-trace amounts of lead, Anal. Chim. Acta, 2002, vol. 464, p. 181.
  11. Faridbod, F., Ganjali, M.R., Pirali-Hamedan, M., and Norouzi, P., MWCNTs-ionic liquids-ionophore graphite nanocomposite based sensor for selective determination of ytterbium(III) ion, Int. J. Electrochem. Sci., 2010, vol. 5, p. 1103.
  12. Ganjali, M.R., Rafiei-Sarmazdeh, Z., Poursaberi, T., Shahtaheri, S.J., and Norouzi, P., Dichromate ion-selective sensor based on functionalized SBA-15/ionic liquid/MWCNTs/graphite, Int. J. Electrochem. Sci., 2012, vol. 7, p. 1908.
  13. Hajiaghababaei, L., Abutalebyar, B., Darvich, M.R., and Shekoftefar, S., Synthesis of a new oxime to the construction of a mercury potentiometric sensor, Sens. Lett., 2013, vol. 11, p. 2315.
  14. Cesarino, I., Marino, G., Matos, J.R., and Cavalheiro, E.T.G., Evaluation of a carbon paste electrode modified with organofunctionalised SBA-15 silica in the determination of copper, Ecl. Quím. São Paulo, 2007, vol. 32, p. 29.
  15. Hajiaghababaei, L., Kazemi, S., and Badiei, A., Using the hydroxymethyl-modified nanoporous silica as a PVC membrane electrode modifier to determination of lead ions, Anal. Bioanal. Electrochem., 2012, vol. 4, p. 246.
  16. Ensafi, A.A., Meghdadi, S., and Allafchian, A.R., Highly selective potentiometric membrane sensor for Hg(II) based on Bis(benzoyl acetone) diethylenetriamine, Sens. J. IEEE, 2008, vol. 8, p. 248.
  17. Hajiaghababaei, L., Sharafi, A., Suzangarzadeh, S., and Faridbod, F., Mercury recognition: a potentiometric membrane sensor based on 4-(benzylidene amino)-3,4-dihydro-6-methyl-3-thioxo-1,2,4-triazin-5(2H)one, Anal. Bioanal. Electrochem., 2013, vol. 5, p. 481.
  18. Gupta, V.K., Jain, S., and Khurana, U., A PVC-based pentathia-15-crown-5 membrane potentiometric sensor for mercury(II), Electroanalysis, 1997, vol. 9, p. 478.
  19. Rofouei, M.K., Mohammadi, M., and Gholivand, M.B., Mercury(II) selective membrane electrode based on 1,3-bis(2-methoxybenzene) triazene, Mat. Sci. Eng. C, 2009, vol. 29, p. 2154.
  20. Hajiaghababaei, L., Shahvelayati, A.S., and Aghili, S.A., Rapid determination of cadmium: a potentiometric membrane sensor based on ninhydrin-pyrogallol monoadduct as a new ionophore, Anal. Bioanal. Electrochem., 2015, vol. 7, p. 91.
  21. Jumal, J., Yamin, B.M., Ahmad, M., and Heng, L.Y., Mercury ion-selective electrode with self-plasticizing poly(n-buthylacrylate) membrane based on 1,2-bis-(N'-benzoylthioureido)cyclohexane as ionophore, APCBEE Procedia, 2012, vol. 3, p. 116.
  22. Ganjali, M.R., Rezapour, M., Pirali-Hamedani, M., and Rashedi, H., Cu(II)-all solid state sensor ion selective electrode (ASS–ISE) with a nano-molar detection limit and its use for the analysis of waste water samples, Int. J. Electrochem. Sci., 2015, vol. 10, p. 6924.
  23. Sharifi, A., Hajiaghababaei, L., Suzangarzadeh, S., and Jalali Sarvestani, M.R., Synthesis of 3-((6-methyl-5-oxo-3-thioxo-2,5-dihydro1,2,4-triazin-4(3H)-yl)imino)indolin-2-one as an excellent ionophore to the construction of a potentiometric membrane sensor for rapid determination of zinc, Anal. Bioanal. Electrochem., 2017, vol. 9, p. 888.
  24. Fahmy, A., Youssef, A., Issa, Y.M., Shehab, O.R., and Sherief, H., Determination of microgram amounts of copper in real samples using new modified carbon paste electrode, Int. J. Electrochem. Sci., 2015, vol. 10, p. 4752.
  25. Bandi, K. R., Singh, A.K., and Upadhyay, A., Electroanalytical and naked eye determination of Cu2+ ion in various environmental samples using 5-amino-1,3,4-thiadiazole-2-thiol based schiff bases, Mat. Sci. Engin. C, 2014, vol. 34, p. 149.
  26. Sadeghi, S., Eslahi, M., Naseri, M.A., Naeimi, H., Sharghi, H., and Sameli, A., Copper ion selective membrane electrodes based on some schiff base derivatives, Electroanalysis, 2003, vol. 15, p. 1327.
  27. Singh, A.K., Sahani, M.K., Bandi, K.R., and Jain, A.K., Electroanalytical studies on Cu (II) ion-selective sensor of coated pyrolytic graphite electrodes based on N2S2O2 and N2S2O3 heterocyclic benzothiazol ligands, Mat. Sci. Eng. C, 2014, vol. 41, p. 206.
  28. Ganjali, M.R., Ghafarloo, A., Faridbod, F., and Norouzi, P., Copper-selective PVC membrane sensor, Int. J. Electrochem. Sci., 2012, vol. 7, p. 3706.
  29. Shahvelayati, A.S., Hajiaghababaei, L., and Panahi Sarmad, A., A green synthesis of functionalized thiazol-2(3H)-imine via a three-component tandem reaction in ionic liquid media, Iran. Chem. Commun., 2016, vol. 5, p. 262.
  30. Becke, A.D., Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 1993, vol. 98, p. 5648.
  31. Becke, A.D., Density-functional exchange-energy approximation with correct asymptotic behaviour, Phys. Rev. A, 1998, vol. 38, p. 3098.
  32. Lee, C., Yang, W., and Parr, R.G., Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B, 1988, vol. 37, p. 785.
  33. Deppmeier, B.J., Driessen, A.J., Hehre, T.S., Hehre, W.J., Johnson, J.A., Klunzinger, P.E., Leonard, J.M., Pham, I.N., Pietro, W.J., Yu, J., and Irvine, C.A., Spartan’10, Version 1.1.0, Wavefunction Inc., 2011.
  34. Bakker, E., Bühlmann, P., and Pretsch, E., Carrier-based ion-selective electrodes and bulk optodes. 1. General characteristics, Chem. Rev., 1997, vol. 97, p. 3083.
  35. Bakker, E. and Meyerhoff, M.E., Ionophore-based membrane electrodes: new analytical concepts and non-classical response mechanisms, Anal. Chim. Acta, 2000, vol. 416, p. 121.
  36. Hamdan, A.J., Sn(II) selective 2-amino-1,4-naphthoquinone derived poly(vinyl chloride) membrane sensors, Int. J. Eelctrochem. Sci., 2010, vol. 5, p. 215.
  37. Zamani, H.A., Ganjali, M.R., Norouzi, P., Tadjarodi, A., and Shahsavani, E., Determination of terbium(III) ions in phosphate rock samples by a Tb3+–PVC membrane sensor based on N,N-dimethyl-N′,N″-bis(4-methoxyphenyl)phosphoramidate, Mater. Sci. Eng. C, 2008, vol. 28, p. 1489.
  38. Rosatzin, T., Bakker, E., Suzuki, K., and Simon, W., Lipophilic and immobilized anionic additives in solvent polymeric membranes of cation-selective chemical sensors, Anal. Chim. Acta, 1993, vol. 280, p. 197.
  39. Javanbakht, M., Ganjali, M.R., Eshghi, H., Sharghi, H., and Shamsipur, M., Mercury(II) ion-selective electrode based on dibenzo-diazathia-18-crown-6-dione, Electroanalysis, 1999, vol. 11, p. 81.
  40. Ganjali, M.R., Norouzi, P., and Rezapour, M., Encyclopedia of sensors, potentiometric ion sensors, Am. Sci. Publisher (ASP), 2006, vol. 8, p. 197.
  41. Umezawa, Y., Umezawa, K., and Sato, H., Selectivity coefficients for ion-selective electrodes: recommended methods for reporting KA, Bpot values (technical report), Pure. Appl. Chem., 1995, vol. 67, p. 507.
  42. Hosseini, M., Ganjali, M.R., Veismohammadi, B., Faridbod, F., Norouzi, P., and Dehghan Abkenar, S., Novel selective optode membrane for terbium ion based on fluorescence quenching of the 2-(5-(dimethylamino) naphthalen-1-ylsulfonyl)-N-henylhydrazinecarbothioamid, Sens. Actuators B, 2010, vol. 147, p. 23.
  43. Shokrollahi, A., Abbaspour, A., Ghaedi, M., Naghashian Haghighi, A., Kianfar, A.H., and Ranjbar, M., Construction of a new Cu2+ coated wire ion selective electrode based on 2-((2-(2-(2-(2-hydroxy-5-methoxybenzylidene amino) phenyl) disufanyl) phenylimino) methyl)-4-methoxyphenol Schiff base, Talanta, 2011, vol. 84, p. 34.
  44. Singh, A.K., Sahani, M.K., Bandi, K.R., and Jain, A.K., Electroanalytical studies on Cu (II) ion-selective sensor of coated pyrolytic graphite electrodes based on N2S2O2 and N2S2O3 heterocyclic benzothiazol ligands, Mater. Sci. Eng. C, 2014, vol. 41, p. 206.
  45. Ghanei-Motlagh, M., Taher, M.A., Saheb, V., Fayazi M., and Sheikhshoaie, I., Theoretical and practical investigations of copper ion selective electrode with polymeric membrane based on N,N′-(2,2-dimethylpropane-1,3-diyl)-bis(dihydroxyacetophenone), Electrochim. Acta, 2011, vol. 56, p. 5376.
  46. Issa, Y.M., Ibrahim, H., and Shehab, O.R., New copper(II)-selective chemically modified carbon paste electrode based on etioporphyrin I dihydrobromide, J. Electroanal. Chem., 2012, vol. 666, p. 11.
  47. Kopylovich, M.N., Mahmudov, K.T., and Pombeiro, A.L., Poly(vinyl) chloride membrane copper-selective electrode based on 1-phenyl-2-(2-hydroxyphenylhydrazo)butane-1,3-dione, J. Hazard. Mater., 2011, vol. 186, p. 1154.
  48. Ghaedi, M., Khajehsharifi, H., Montazerozohori, M., Tavallali, H., Tahmasebi, K., and Khodadoust, S., Designing and synthesis of bis(2,4-dihydroxybenzylidene)-1,6-diaminohexane and its efficient application as neutral carrier for preparation of new copper selective electrode, Mater. Sci. Eng. C, 2012, vol. 32, p. 674.