Examples



mdbootstrap.com



 
Статья
2021

Systems of In Situ Diagnostics of Plasma-Surface Interaction in a Mephist-1 Tokamak


V. A. KurnaevV. A. Kurnaev, V. E. NikolaevaV. E. Nikolaeva, S. A. KratS. A. Krat, E. D. VovchenkoE. D. Vovchenko, A. V. KazievA. V. Kaziev, A. S. PrishvitsynA. S. Prishvitsyn, G. M. VorobievG. M. Vorobiev, T. V. StepanovaT. V. Stepanova, D. S. GvozdevskayaD. S. Gvozdevskaya
Российский физический журнал
https://doi.org/10.1007/s11182-021-02309-2
Abstract / Full Text

At the Institute for Laser and Plasma Technologies of NRNU MEPhI, a compact spherical tokamak MEPhIST (MEPhI-Spherical Tokamak) has been developed and constructed for educational, demonstrational and research purposes. The creation of plasma diagnostic systems involves several stages, determined by a successive complication of the plasma research tasks, the device upgrading and the development of educational and methodological materials for the laboratory works to be performed at the tokamak. Testing of the in situ methods for analyzing the plasma-surface interaction is one of the main scientific and technological goals set for this tokamak. The diagnostic complex described in the paper provides cumulative information on the processes occurring after the plasma-surface contact; it represents a set of very informative and well-tested diagnostic tools that allow the students to obtain visual reliable information on the processes occurring in the tokamak vacuum vessel.

Author information
  • National Research Nuclear University, MEPhI (Moscow Engineering Physics Institute), Moscow, RussiaV. A. Kurnaev, V. E. Nikolaeva, S. A. Krat, E. D. Vovchenko, A. V. Kaziev, A. S. Prishvitsyn, G. M. Vorobiev, T. V. Stepanova & D. S. Gvozdevskaya
References
  1. V. A. Kurnaev et al., Phys. Atomic Nucl., 82, No. 10, 1 (2019).
  2. V. A. Kurnaev et al., Vestnik SRNU MEPHI, 8, No. 6, 491 (2019).
  3. NIST Atomic Spectra Database (version 4.0), Y. Ralchenko et al. https://physics.nist.gov/PhysRefData/ASD/Html/verhist.shtml.
  4. R. Vizie, F. Ochsenbein, et al., http://vizier.u-strasbg.fr.
  5. NIFS DATABASE. http://dbshino.nifs.ac.jp.
  6. IAEA AMDIS ALADDIN Database. https://www-amdis.iaea.org/ALADDIN/
  7. P. A. Loboda SPECTR-W3, P. A. Loboda. http://spectr-w3.snz.ru/index.phtml.
  8. A. Zimin, A. Shumov, V. Troynov, et al., Online Experimentation: Emerging Technologies and IoT /(Eds. A. Cardoso, A. M. Lopes, and M. T. Restivo), International Frequency Sensor Association Publishing S. L., Barcelona (2016).
  9. A. Zimin, A. Shumov, S. E. Krivitskii, and V. I. Troynov, Inform. Teknolog., No. 6, 72 (2011).
  10. A. W. Miziolek, I. Schechter, and V. Palleschi, Laser-Induced Breakdown Spectroscopy (LIBS): Fundamental and Applications, Cambridge University Press (2006).
  11. D. A. Cremers and L. J. Radsiemski, Handbook of Laser Induced Spectroscopy (Wiley, Chichester, 2006).
  12. S. Almaviva, L. Caneve, F. Colao, et al., J. Nucl. Mater., 421, 73 (2012).
  13. L. B. Begrambekov and P. A Shigin, Prib. Tekh. Exper., No. 2, 143 (2004).
  14. I. V. Vizgalov, K. M. Gutorov, V. A. Kurnaev, and I. A. Sorokin, Phys. Atomic Nucl., 82, No. 10, 1368 (2019).