Статья
2017

Phenomenological description of transport properties of three-phase composites


N. F. Uvarov N. F. Uvarov
Российский электрохимический журнал
https://doi.org/10.1134/S1023193517070151
Abstract / Full Text

The possibility is discussed of estimating the values of conductivity and dielectric permeability of three-phase composites using the modified mixing equation similar to the equation suggested earlier for two-phase systems. It is shown that the choice of theoretical mixing equation parameters for three-phase composites of the conductor–electrolyte–insulator type can be controversial; variants of solving this problem are suggested. According to the equation, three percolation thresholds can exist in this three-phase system; their position can be estimated on the basis of the maximum of dielectric permeability. The value of the maximum is determined by the ratio of conductivities of the conducting and dielectric phases. The equation can be extended to the case when interaction exists between the individual phases of the composite and a highly conducting layer is formed at the interface between these phases. The calculation of three-phase composites of the conductor–composite solid electrolyte–insulator type is calculated for the first time. It is shown that the mixing equation also allows calculating electric properties of composites in this case.

Author information
  • Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630128, Russia

    N. F. Uvarov

  • Novosibirsk State Technical University, Novosibirsk, 630073, Russia

    N. F. Uvarov

  • Novosibirsk State University, Novosibirsk, 630090, Russia

    N. F. Uvarov

References
  1. Fricke, H., Phys. Rev., 1924, vol. 24, p. 575.
  2. Wagner, K.W., Arch. Electrotechn., 1914, vol. 2, p. 371.
  3. Meredith, R.E. and Tobias, C.W., in Advances in Electrochemistry and Electrochemical Engineering, Tobias, C.W., Ed., New York: Intersci., 1962, vol. 2, pp. 15–47.
  4. McLachlan, D.S., Blaszkiewicz, M., and Newnham, R.E., J. Am. Ceram. Soc., 1990, vol. 73, p. 2187.
  5. Bruggeman, D.A.G., Ann. Phys. (New York), 1935, vol. 24, p. 636.
  6. Landauer, R., J. Appl. Phys., 1952, vol. 23, p. 779.
  7. Nan, C.-W., Prog. Mater. Sci., 1993, vol. 37, p. 1.
  8. Banhegyi, G., Colloid Polymer Sci., 1986, vol. 264, p. 1030.
  9. Kirkpatrick, S., Rev. Mod. Phys., 1973, vol. 45, p. 574.
  10. Shklovskii, B.I. and Efros, A.L., Elektronnaya teoriya legirovannykh poluprovodnikov (Electron Theory of Doped Semiconductors), Moscow Nauka, 1982.
  11. Uvarov, N.F., Dokl. Ross. Akad. Nauk, 1997, vol. 353, p. 213.
  12. Uvarov, N.F., Solid State Ionics, 2000, vols. 136–137, p. 1267.
  13. Emets, Yu.P., J. Appl. Mech. Tech. Phys., 2001, vol. 42, p. 165.
  14. Emets, Yu.P., Tech. Phys., 2003, vol. 73, p. 317.
  15. Blender, R. and Dieterich, W., J. Phys. C: Solid State Phys., 1987, vol. 20, p. 6113.
  16. Boltaev, A.P. and Pudonin, F.A., J. Exp. Theor. Phys., 2008, vol. 134, p. 501.
  17. Boltaev, A.P., Pudonin, F.A., and Sherstnev, I.A., Phys. Solid State, 2015, vol. 57, p. 2099.
  18. Bobnar, V., Hrovat, M., Holc, J., and Kosec, M., in Ferroelectrics—Characterization and Modeling, Lallart, M., Ed., Intech, 2011, pp. 117–134.
  19. Maier, J., Prog. Solid State Chem., 1995, vol. 23, p. 171.
  20. Jow, T. and Wagner, J.B., J. Electrochem. Soc., 1979, vol. 126, p. 1963.
  21. Phipps, J.B., Johnson, D.L., and Whitmore, D.H., Solid State Ionics, 1981, vol. 5, p. 393.
  22. Wang, J.C. and Dudney, N., Solid State Ionics, 1986, vols. 18/19, p. 112.
  23. Mikrajuddin, Sh.F.G. and Okuyama, K., J. Electrochem. Soc., 2000, vol. 147, p. 3157.
  24. Nan, C.W. and Smith, D.M., Mater. Sci. Eng., B, 1991, vol. 10, p. 99.
  25. Uvarov, N.F., Kompozitsionnye tverdye elektrolity (Composite Solid Electrolytes), Novosibirsk: Izd. SO RAN.
  26. Uvarov, N.F., J. Solid State Electrochem., 2011, vol. 15, p. 367.