Electrochemical Noise Measurement of Polymer Membrane Fuel Cell under Load

E. A. Astaf’ev E. A. Astaf’ev
Российский электрохимический журнал
Abstract / Full Text

Electrochemical noise of a polymer membrane hydrogen–air fuel cell under different currents is measured. Frequency and amplitude dependences of the current-noise power spectral density are calculated. In the frequency interval from 10 to 200 Hz a linear segment of the frequency characteristic has a slope of ‒2. The current-noise power spectral density is found to be proportional to the 4th power of the fuel cell loading DC current. Thus found frequency dependence of the fuel cell electrochemical noise was shown to differ markedly from that of the electrochemical impedance real component.

Author information
  • Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow oblast, 142432, Russia

    E. A. Astaf’ev

  1. Liu, L., Li, Y., and Wang, F., Pitting mechanism on an austenite stainless steel nanocrystalline coating investigated by electrochemical noise and in-situ AFM analysis, Electrochim. Acta, 2008, vol. 54, p. 768. doi 10.1016/j.electacta.2008.06.076
  2. Astafev, E.A., Ukshe, A.E., Manzhos, R.A., Dobrovolsky, Yu.A., Lakeev, S.G., and Timashev, S.F., Flicker noise spectroscopy in the analysis of electrochemical noise of hydrogen-air PEM fuel cell during its degradation, Int. J. Electrochem. Sci., 2017, vol. 12, p. 1742. doi 10.20964/2017.03.56
  3. Martemianov, S., Adiutantov, N., Evdokimov, Yu.K., Madier, L., Maillard, F., and Thomas, A., New methodology of electrochemical noise analysis and applications for commercial Li-ion batteries, J. Solid. State. Electrochem., 2015, vol. 19, p. 2803. doi 10.1007/S10008-015-2855-2
  4. Knott, K.F., Measurement of battery noise and resistor-current noise at subaudio frequencies, Electron. Lett., 1965, vol. 1, p. 132. doi 10.1049/el:19650123
  5. Rubio, M.A., Bethune, K., Urquia, A., and St-Pierre, J., Proton exchange membrane fuel cell failure mode early diagnosis with wavelet analysis of electrochemical noise, Int. J. Hydrogen Energy, 2016, vol. 41, p. 14991. doi 10.1016/j.ijhydene.2016.05.292
  6. Koshekov, K.T., Klikushin, Yu.N., Kobenko, V.Yu., Evdokimov, Yu.K., and Demyanenko, A.V., Fuel cell diagnostics using identification measurement theory, J. Fuel Cell Sci. Technol., 2014, vol. 11, UNSP 051003. doi 10.1115/1.4027395
  7. Legros, B., Thivel, P.-X., Bultel, Y., and Nogueira, R.P., First results on PEMFC diagnosis by electrochemical noise, Electrochem. Commun., 2011, vol. 13, p. 1514. doi 10.1016/j.elecom.2011.10.007
  8. Baert, D.H.J. and Vervaet, A.A.K., Small bandwidth measurement of the noise voltage of batteries, J. Power Sources, 2003, vol. 114, p. 357. doi 10.1016/S0378-7753(02)00599-2
  9. Martinet, S., Durand, R., Ozil, P., Leblanc, P., and Blanchard, P., Application of electrochemical noise analysis to the study of batteries: state-of-charge determination and overcharge detection, J. Power Sources, 1999, vol. 83, p. 93. doi 10.1016/S0378-7753(99)00272-4
  10. Roberge, P. and Beaudoin, R., Voltage noise measurements on sealed lead-acid batteries, J. Power Sources, 1989, vol. 27, p. 177. doi 10.1016/0378-7753(89)80131-4
  11. Tyagai, V.A. and Luk’yanchikova, N.B., Equilibrium fluctuations in electrochemical processes, Elektrokhimiya (in Russian), 1967, vol. 3, p. 316.
  12. Tyagai, V.A., Faradaic noise of complex electrochemical reactions, Electrochim. Acta, 1971, vol. 16, p. 1647. doi 10.1016/0013-4686(71)85075-2
  13. Tyagai, V.A., Noise in electrochemical systems, Elektrokhimiya (in Russian), 1974, vol. 10, p. 3.
  14. Bertocci, U., Huet, F., Nogueira, R.P., and Rousseau, P., Drift removal procedures in the analysis of electrochemical noise, Corrosion, 2002, vol. 58, p. 337. doi 10.5006/1.3287684
  15. Oltra, R., Gabrielli, C., Huet, F., and Keddam, M., Electrochemical investigation of locally depassivated iron. A comparison of various techniques, Electrochim. Acta, 1986, vol. 31, p. 1501. doi 10.1016/0013-4686(86)87068-2
  16. Ritter, S., Huet, F., and Cottis, R.A., Guideline for an assessment of electrochemical noise measurement devices, Mat. Corr., 2012, vol. 63, p. 297. doi 10.1002/maco.201005839
  17. Grafov, B.M., On the equilibrium fluctuations in a stationary state, Elektrokhimiya (in Russian), 1966, vol. 2, p. 1249.
  18. Grafov, B.M., Dobrovol’skii, Yu.A., Davydov, A.D., Ukshe, A.E., Klyuev, A.L., and Astaf’ev, E.A., Electrochemical noise diagnostics: Analysis of algorithm of orthogonal expansions, Russ. J. Electrochem., 2015, vol. 51, p. 503. doi 10.1134/S1023193515060063
  19. Klyuev, A.L., Davydov, A.D., Grafov, B.M., Dobrovolskii, Yu.A., Ukshe, A.E., and Astaf’ev, E.A., Electrochemical noise spectroscopy: Method of secondary Chebyshev spectrum, Russ. J. Electrochem., 2016, vol. 52, p. 1001. doi 10.1134/S1023193516100062
  20. Grafov, B.M., Dobrovolskii, Yu.A., Klyuev, A.L., Ukshe, A.E., Davydov, A.D., and Astaf’ev, E.A., Median Chebyshev spectroscopy of electrochemical noise, J. Solid State Electrochem., 2017, vol. 21, p. 915. doi 10.1007/s10008-016-3395-0
  21. Astaf’ev, E.A., Ukshe, A.E., and Dobrovolskii, Yu.A., Hardware for measurement of electrochemical noise of chemical power sources, Pribory i Tekhnika Eksperimenta (in Russian), 2017, N. 5, p. 1. doi 10.7868/S0032816217050032
  22. Cruz-Manzo, S., Chen, R., and Rama, P., Study of current distribution and oxygen diffusion in the fuel cell cathode catalyst layer through electrochemical impedance spectroscopy, Int. J. Hydrogen Energy, 2013, vol. 38, p. 1702. doi 10.1016/j.ijhydene.2012.08.141
  23. Bao, C. and Bessler, W.G., Two-dimensional modeling of a polymer electrolyte membrane fuel cell with long flow channel. Part II. Physics-based electrochemical impedance analysis, J. Power Sources, 2015, vol. 278, p. 675. doi 10.1016/j.jpowsour.2014.12.045
  24. Niroumand, A.M., Mérida, W., Eikerling, M., and Saif, M., Pressure-voltage oscillations as a diagnostic tool for PEFC cathodes, Electrochem. Commun., 2010, vol. 12, p. 122. doi 10.1016/j.elecom.2009.11.003
  25. Nyquist, H., Thermal agitation of electric charge in conductors, Phys. Rev., 1928. vol. 32, p. 110. doi 10.1103/PhysRev.32.110
  26. Bertocci, U. and Huet, F., Noise analysis applied to electrochemical systems, Corrosion, 1995, vol. 51, p. 131. doi 10.5006/1.3293585
  27. Astaf'ev, E.A., Lyskov, N.V., and Gerasimova, E.V., Research of polymer electrolyte fuel cell cathodes by electrochemical techniques, Al’ternativnaya Energetika i Ekologiya (in Russian), 2009, no. 8, p. 93.
  28. Schottky, W., Über spontane Stromschwankungen in verschiedenen Elektrizitätsleitern, Ann. Phys., 1918, vol. 362, p. 541. doi 10.1002/andp.19183622304
  29. Evdokimov, Yu.K., Denisov, E.S., and Martemianov, S.A., Electrical noise of hydrogen fuel cell and diagnostic characteristic research, Nelineyniy Mir (in Russian), 2009, vol. 7, p. 706.
  30. Maizia, R., Dib, A., Thomas, A., and Martemianov, S., Proton exchange membrane fuel cell diagnosis by spectral characterization of the electrochemical noise, J. Power Sources, 2017, vol. 342, p. 553. doi 10.1016/j.jpowsour.2016.12.053